Structural Characterization, DFT Calculation, NCI, Scan-Rate Analysis and Antifungal Activity against Botrytis cinerea of (E)-2-{[(2-Aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol (Pyridine Schiff Base)

No hay miniatura disponible
Fecha
2020-06
Profesor/a GuĆ­a
Facultad/escuela
Idioma
en
TĆ­tulo de la revista
ISSN de la revista
TĆ­tulo del volumen
Editor
MDPI
Nombre de Curso
Licencia CC
AtribuciĆ³n 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Botrytis cinerea is a ubiquitous necrotrophic filamentous fungal phytopathogen that lacks host specificity and can affect more than 1000 different plant species. In this work, we explored L1 [(E)-2-{[(2-aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol], a pyridine Schiff base harboring an intramolecular bond (IHB), regarding their antifungal activity against Botrytis cinerea. Moreover, we present a full characterization of the L1 by NMR and powder diffraction, as well as UV-vis, in the presence of previously untested different organic solvents. Complementary timedependent density functional theory (TD-DFT) calculations were performed, and the noncovalent interaction (NCI) index was determined. Moreover, we obtained a scan-rate study on cyclic voltammetry of L1. Finally, we tested the antifungal activity of L1 against two strains of Botrytis cinerea (B05.10, a standard laboratory strain; and A1, a wild type strains isolated from Chilean blueberries). We found that L1 acts as an efficient antifungal agent against Botrytis cinerea at 26 Ā°C, even better than the commercial antifungal agent fenhexamid. Although the antifungal activity was also observed at 4 Ā°C, the effect was less pronounced. These results show the high versatility of this kind of pyridine Schiff bases in biological applications. Ā© 2020 MDPI AG. All rights reserved.
Notas
IndexaciĆ³n: Scopus
Palabras clave
Botrytis cinerea, Intramolecular hydrogen bond, Pyridine schiff base
CitaciĆ³n
Molecules Volume 25, Issue 12June 2020 Article number 2741
DOI
10.3390/molecules25122741
Link a Vimeo