Examinando por Autor "Piranomonte, S."
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Ítem A comparison between short GRB afterglows and kilonova AT2017gfo: Shedding light on kilonovae properties(Oxford University Press, 2020-04) Rossi, A.; Stratta, G.; Maiorano, E.; Spighi, D.; Masetti, N.; Palazzi, E.; Gardini, A.; Melandri, A.; Nicastro, L.; Pian, E.; Branchesi, M.; Dadina, M.; Testa, V.; Brocato, E.; Benetti, S.; Ciolfi, R.; Covino, S.; D'Elia, V.; Grado, A.; Izzo, L.; Perego, A.; Piranomonte, S.; Salvaterra, R.; Selsing, J.; Tomasella, L.; Yang, S.; Vergani, D.; Amati, L.; Stephen, J.B.Multimessenger astronomy received a great boost following the discovery of kilonova (KN) AT2017gfo, the optical counterpart of the gravitational wave source GW170817 associated with the short gamma-ray burst GRB 170817A. AT2017gfo was the first KN that could be extensively monitored in time using both photometry and spectroscopy. Previously, only few candidates have been observed against the glare of short GRB afterglows. In this work, we aim to search the fingerprints of AT2017gfo-like KN emissions in the optical/NIR light curves of 39 short GRBs with known redshift. For the first time, our results allow us to study separately the range of luminosity of the blue and red components of AT2017gfo-like kilonovae in short GRBs. In particular, the red component is similar in luminosity to AT2017gfo, while the blue KN can be more than 10 times brighter. Finally, we exclude a KN as luminous as AT2017gfo in GRBs 050509B and 061201. © 2020 The Author(s).Ítem Diversity of gamma-ray burst energetics vs. supernova homogeneity: SN 2013cq associated with GRB 130427A(EDP Sciences, 2014-07) Melandri, A.; Pian, E.; D'Elia, V.; D'Avanzo, P.; Della Valle, M.; Mazzali, P.A.; Tagliaferri, G.; Cano, Z.; Levan, A.J.; Moller, P.; Amati, L.; Bernardini, M.G.; Bersier, D.; Bufano, F.; Campana, S.; Castro-Tirado, A.J.; Covino, S.; Ghirlanda, G.; Hurley, K.; Malesani, D.; Masetti, N.; Palazzi, E.; Piranomonte, S.; Rossi, A.; Salvaterra, R.; Starling, R.L.C.; Tanaka, M.; Tanvir, N.R.; Vergani, S.D.Aims. Long-duration gamma-ray bursts (GRBs) have been found to be associated with broad-lined type-Ic supernovae (SNe), but only a handful of cases have been studied in detail. Prompted by the discovery of the exceptionally bright, nearby GRB 130427A (redshift z = 0.3399), we aim at characterising the properties of its associated SN 2013cq. This is the first opportunity to test the progenitors of high-luminosity GRBs directly. Methods. We monitored the field of the Swift long-duration GRB 130427A using the 3.6 m TNG and the 8.2 m VLT during the time interval between 3.6 and 51.6 days after the burst. Photometric and spectroscopic observations revealed the presence of the type Ic SN 2013cq. Results. Spectroscopic analysis suggests that SN 2013cq resembles two previous GRB-SNe, SN 1998bw and SN 2010bh, associated with GRB 980425 and X-ray flash (XRF) 100316D, respectively. The bolometric light curve of SN 2013cq, which is significantly af fected by the host galaxy contribution, is systematically more luminous than that of SN 2010bh (∼2 mag at peak), but is consistent with SN 1998bw. The comparison with the light curve model of another GRB-connected SN 2003dh indicates that SN 2013cq is consistent with the model when brightened by 20%. This suggests a synthesised radioactive 56Ni mass of ∼0.4M . GRB 130427A/SN 2013cq is the first case of low-z GRB-SN connection where the GRB energetics are extreme (Eγ,iso ∼ 1054 erg). We show that the maximum luminosities attained by SNe associated with GRBs span a very narrow range, but those associated with XRFs are significantly less luminous. On the other hand the isotropic energies of the accompanying GRBs span 6 orders of magnitude (1048 erg < Eγ,iso < 1054 erg), although this range is reduced when corrected for jet collimation. The GRB total radiated energy is in fact a small fraction of the SN energy budget.Ítem GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226(Oxford University Press, 2018-02) Brocato, E.; Branchesi, M.; Cappellaro, E.; Covino, S.; Grado, A.; Greco, G.; Limatola, L.; Stratta, G.; Yang, S.; Campana, S.; D'Avanzo, P.; Getman, F.; Melandri, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Piranomonte, S.; Pulone, L.; Rossi, A.; Tomasella, L.; Amati, L.; Antonelli, L.A.; Ascenzi, S.; Benetti, S.; Bulgarelli, A.; Capaccioli, M.; Cella, G.; Dadina, M.; De Cesare, G.; D'Elia, V.; Ghirlanda, G.; Ghisellini, G.; Giuffrida, G.; Iannicola, G.; Israel, G.; Lisi, M.; Longo, F.; Mapelli, M.; Marinoni, S.; Marrese, P.; Masetti, N.; Patricelli, B.; Possenti, A.; Radovich, M.; Razzano, M.; Salvaterra, R.; Schipani, P.; Spera, M.; Stamerra, A.; Stella, L.; Tagliaferri, G.; Testa, V.We report the results of deep optical follow-up surveys of the first two gravitational-wave sources, GW150914 and GW151226, done by the GRAvitationalWave Inaf TeAm Collaboration (GRAWITA). The VLT Survey Telescope (VST) responded promptly to the gravitational wave alerts sent by the LIGO and Virgo Collaborations, monitoring a region of 90 and 72 deg 2 for GW150914 and GW151226, respectively, and repeated the observations over nearly two months. Both surveys reached an average limiting magnitude of about 21 in the r band. The paper describes the VST observational strategy and two independent procedures developed to search for transient counterpart candidates in multi-epoch VST images. Several transients have been discovered but no candidates are recognized to be related to the gravitational wave events. Interestingly, among many contaminant supernovae, we find a possible correlation between the supernova VSTJ57.77559-59.13990 and GRB150827A detected by Fermi-GBM. The detection efficiency of VST observations for different types of electromagnetic counterparts of gravitational wave events is evaluated for the present and future follow-up surveys. © 2017 The Author(s).Ítem SN 2013dx associated with GRB 130702A: A detailed photometric and spectroscopic monitoring and a study of the environment(EDP Sciences, 2015-05) D'Elia, V.; Pian, E.; Melandri, A.; D'Avanzo, P.; Della Valle, M.; Mazzali, P.A.; Piranomonte, S.; Tagliaferri, G.; Antonelli, L.A.; Bufano, F.; Covino, S.; Fugazza, D.; Malesani, D.; Møller, P.; Palazzi, E.Aims. Long-duration gamma-ray bursts (GRBs) and broad-line, type Ic supernovae (SNe) are strongly connected. We aim at characterizing SN 2013dx, which is associated with GRB? 130702A, through a sensitive and extensive ground-based observational campaign in the optical-IR band. Methods. We monitored the field of the Swift GRB 130702A (redshift z = 0.145) using the 8.2 m VLT, the 3.6 m TNG and the 0.6 m REM telescopes during the time interval between 4 and 40 days after the burst. Photometric and spectroscopic observations revealed the associated type Ic SN 2013dx. Our multiband photometry allowed constructing a bolometric light curve. Results. The bolometric light curve of SN 2013dx resembles that of 2003dh (associated with GRB? 030329), but is ~10% faster and ~25% dimmer. From this we infer a synthesized 56Ni mass of ∼0.2 Mo. The multi-epoch optical spectroscopy shows that the SN 2013dx behavior is best matched by SN 1998bw, among the other well-known low-redshift SNe associated with GRBs and XRFs, and by SN 2010ah, an energetic type Ic SN not associated with any GRB. The photospheric velocity of the ejected material declines from ∼2.7 × 104 km? s-1 at 8 rest frame days from the explosion, to ∼3.5 × 103 km? s-1 at 40 days. These values are extremely close to those of SN1998bw and 2010ah. We deduce for SN 2013dx a kinetic energy of ∼35 × 1051 erg and an ejected mass of ∼7 M. This suggests that the progenitor of SN2013dx had a mass of ∼25-30 M, which is 15-20% less massive than that of SN 1998bw. Finally, we studied the SN 2013dx environment through spectroscopy of the closeby galaxies: 9 out of the 14 inspected galaxies lie within 0.03 in redshift from z = 0.145, indicating that the host of GRB? 130702A/SN 2013dx belongs to a group of galaxies, an unprecedented finding for a GRB-associated SN and, to our knowledge, for long GRBs in general. © ESO, 2015.Ítem Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger(Nature Publishing Group, 2017-11) Pian, E.; D'Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, Campana S.; Cappellaro, E.; Covino, S.; D'Elia, V.; Fynbo, J.P.U.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Grado, A.; Greco, G.; Hjorth, J.; Kouveliotou, C.; Levan, A.; Limatola, L.; Malesani, D.; Mazzali, P.A.; Melandri, A.; Møller, P.; Nicastro, L.; Palazzi, E.; Piranomonte, S.; Rossi, A.; Salafia, O.S.; Selsing, J.; Stratta, G.; Tanaka, M.; Tanvir, N.R.; Tomasella, L.; Watson, D.; Yang, S.; Amati, L.; Antonelli, L.A.; Ascenzi, S.; Bernardini, M.G.; Boër, M.; Bufano, F.; Bulgarelli, A.; Capaccioli, M.; Casella, P.; Castro-Tirado, A.J.; Chassande-Mottin, E.; Ciolfi, R.; Copperwheat, C.M.; Dadina, M.; De Cesare, G.; Di Paola, A.; Fan, Y.Z.; Gendre, B.; Giuffrida, G.; Giunta, A.; Hunt, L.K.; Israel, G.L.; Jin, Z.-P.; Kasliwal, M.M.; Klose, S.; Lisi, M.; Longo, F.; Maiorano, E.; Mapelli, M.; Masetti, N.; Nava, L.; Patricelli, B.; Perley, D.; Pescalli, A.; Piran, T.; Possenti, A.; Pulone, L.; Razzano, M.; Salvaterra, R.; Schipani, P.; Spera, M.; Stamerra, A.; Stella, L.; Tagliaferri, G.; Testa, V.; Troja, E.; Turatto, M.; Vergani, S.D.; Vergani, D.The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of γ-rays, a gravitational-wave signal, and a transient optical-near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process)1-3. Such transients, named 'macronovae' or 'kilonovae'4-7, are believed to be centres of production of rare elements such as gold and platinum8. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short γ-ray burst9,10 at redshift z = 0.356, although findings indicating bluer events have been reported11. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational-wave source12 GW170817 and γ-ray burst13,14 GRB 170817A associated with a galaxy at a distance of 40 megaparsecs from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models15,16. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum, indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03 to 0.05 solar masses of material, including high-opacity lanthanides. © 2017 Macmillan Publishers Limited, part of Springer Nature.Ítem The supernova of the MAGIC gamma-ray burst GRB 190114C(EDP Sciences, 2022-03) Melandri, A.; Izzo, L.; Pian, E.; Malesani, D.; Della Valle, M.; Rossi, A.; DAvanzo, P.; Guetta, D.; Mazzali, P.; Benetti, S.; Masetti, N.; Palazzi, E.; Savaglio, S.; Amati, L.; Antonelli, L.; Ashall, C.; Bernardini, M.; Campana, S.; Carini, R.; Covino, S.; DElia, V.; De Ugarte Postigo, A.; De Pasquale, M.; Filippenko, A.; Fruchter, A.; Fynbo, J.; Giunta, A.; Hartmann, D.; Jakobsson, P.; Japelj, J.; Jonker, P.; Kann, D.; Lamb, G.; Levan, A.; Martin-Carrillo, A.; Møller, P.; Piranomonte, S.; Pugliese, G.; Salvaterra, R.; Schulze, S.; Starling, R.; Stella, L.; Tagliaferri, G.; Tanvir, N.; Watson, D.We observed GRB 190114C (redshift z = 0.4245), the first gamma-ray burst (GRB) ever detected at TeV energies, at optical and near-infrared wavelengths with several ground-based telescopes and the Hubble Space Telescope, with the primary goal of studying its underlying supernova, SN 2019jrj. The monitoring spanned the time interval between 1.3 and 370 days after the burst, in the observer frame. We find that the afterglow emission can be modelled with a forward shock propagating in a uniform medium modified by time-variable extinction along the line of sight. A jet break could be present after 7 rest-frame days, and accordingly the maximum luminosity of the underlying supernova (SN) ranges between that of stripped-envelope core-collapse SNe of intermediate luminosity and that of the luminous GRB-associated SN 2013dx. The observed spectral absorption lines of SN 2019jrj are not as broad as in classical GRB SNe and are instead more similar to those of less-luminous core-collapse SNe. Taking the broad-lined stripped-envelope core-collapse SN 2004aw as an analogue, we tentatively derive the basic physical properties of SN 2019jrj. We discuss the possibility that a fraction of the TeV emission of this source might have had a hadronic origin and estimate the expected high-energy neutrino detection level with IceCube.