SN 2013dx associated with GRB 130702A: A detailed photometric and spectroscopic monitoring and a study of the environment

No hay miniatura disponible
Fecha
2015-05
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Nombre de Curso
Licencia CC
Atribución 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Aims. Long-duration gamma-ray bursts (GRBs) and broad-line, type Ic supernovae (SNe) are strongly connected. We aim at characterizing SN 2013dx, which is associated with GRB? 130702A, through a sensitive and extensive ground-based observational campaign in the optical-IR band. Methods. We monitored the field of the Swift GRB 130702A (redshift z = 0.145) using the 8.2 m VLT, the 3.6 m TNG and the 0.6 m REM telescopes during the time interval between 4 and 40 days after the burst. Photometric and spectroscopic observations revealed the associated type Ic SN 2013dx. Our multiband photometry allowed constructing a bolometric light curve. Results. The bolometric light curve of SN 2013dx resembles that of 2003dh (associated with GRB? 030329), but is ~10% faster and ~25% dimmer. From this we infer a synthesized 56Ni mass of ∼0.2 Mo. The multi-epoch optical spectroscopy shows that the SN 2013dx behavior is best matched by SN 1998bw, among the other well-known low-redshift SNe associated with GRBs and XRFs, and by SN 2010ah, an energetic type Ic SN not associated with any GRB. The photospheric velocity of the ejected material declines from ∼2.7 × 104 km? s-1 at 8 rest frame days from the explosion, to ∼3.5 × 103 km? s-1 at 40 days. These values are extremely close to those of SN1998bw and 2010ah. We deduce for SN 2013dx a kinetic energy of ∼35 × 1051 erg and an ejected mass of ∼7 M. This suggests that the progenitor of SN2013dx had a mass of ∼25-30 M, which is 15-20% less massive than that of SN 1998bw. Finally, we studied the SN 2013dx environment through spectroscopy of the closeby galaxies: 9 out of the 14 inspected galaxies lie within 0.03 in redshift from z = 0.145, indicating that the host of GRB? 130702A/SN 2013dx belongs to a group of galaxies, an unprecedented finding for a GRB-associated SN and, to our knowledge, for long GRBs in general. © ESO, 2015.
Notas
Indexación: Scopus
Palabras clave
Gamma-ray burst, Supernovae: individual: SN 2013dx
Citación
Astronomy and Astrophysics Volume 5771 May 2015 Article number A116
DOI
10.1051/0004-6361/201425381
Link a Vimeo