Examinando por Autor "Prieto, Juan Carlos"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Antinociceptive interaction of Tramadol with Gabapentin in experimental mononeuropathic pain(Blackwell Publishing Ltd, 2016-08) Miranda, Hugo F.; Noriega, Viviana; Prieto, Juan Carlos; Zanetta, Pilar; Castillo, Rodrigo; Aranda, Nicolás; Sierralta, FernandoNeuropathic pain is the result of injury to the nervous system, and different animal models have been established to meet the manifestations of neuropathy. The pharmacotherapy for neuropathic pain includes gabapentin and tramadol, but these are only partially effective when given alone. The aim of this study was to assess the antinociceptive interaction between both drugs using the isobolographic analysis and changes of the IL-1β concentration in a mouse model of neuropathic pain (partial sciatic nerve ligation or PSNL). The i.p. administration of gabapentin (5–100 mg/kg) or tramadol (12.5–100 mg/kg) displayed a dose-dependent antinociception in the hot plate assay of PSNL mice, and effects induced by gabapentin with tramadol were synergistic. Administration of gabapentin or tramadol reversed significantly the increase in the concentration of IL-1β induced by PSNL after either 7 or 14 days and their combination was significantly more potent in reversing the elevated concentration of IL-1β. The synergism obtained by the co-administration of gabapentin and tramadol is proposed to result from action on different mechanisms in pain pathways. Gabapentin or tramadol or their combination modulates the expression of pro-inflammatory cytokine, IL-1β, in a model of mice PSNL which could be due to an inhibition of glial function.Ítem Isobolographic analysis of the opioid-opioid interactions in a tonic and a phasic mouse model of induced nociceptive pain(BioMed Central Ltd., 2014-07) Miranda, Hugo F.; Noriega, Viviana; Zanetta, Pilar; Prieto, Juan Carlos; Prieto-Rayo, Juan Carlos; Aranda, Nicolás; Sierralta, FernandoBackground: Opioids have been used for the management of pain and coadministration of two opioids may induce synergism. In a model of tonic pain, the acetic acid writhing test and in a phasic model, the hot plate, the antinociceptive interaction between fentanyl, methadone, morphine, and tramadol was evaluated. Results: The potency of opioids in the writhing test compared to the hot plate assay was from 2.5 (fentanyl) to 15.5 (morphine) times, respectively. The ED50 was used in a fixed ratio for each of the six pairs of opioid combinations, which, resulted in a synergistic antinociception except for methadone/tramadol and fentanyl/ tramadol which were additive, in the hot plate. The opioid antagonists naltrexone, naltrindole and nor-binaltorphimine, suggests that the synergism of morphine combinations are due to the activation of MOR subtypes with partially contribution of DOR and KOR, however fentanyl and methadone combinations are partially due to the activation of MOR and DOR subtypes and KOR lack of participation. The antinociceptive effects of tramadol combinations, are partially due to the activation of MOR, DOR and KOR opioid subtypes. Conclusion: These results suggets that effectiveness and magnitude of the interactions between opioids are dependent on pain stimulus intensity.