Examinando por Autor "Robin A.C."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns(Institute of Physics Publishing, 2017-09) Fernández-Trincado J.G.; Zamora O.; Garcia-Hernández D.A.; Souto, Diogo; Dell'Agli F.; Schiavon R.P.; Geisler D.; Tang B.; Villanova S.; Hasselquist, Sten; Mennickent R.E.; Cunha, Katia; Shetrone M.; Prieto, Carlos Allende; Vieira K.; Zasowski G.; Sobeck J.; Hayes C.R.; Majewski S.R.; Placco V.M.; Beers T.C.; Schleicher D.R.G.; Robin A.C.; Mészáros, Sz.; Masseron T.; Pérez, Ana E. Garcia; Anders F.; Meza A.; Alves-Brito A.; Carrera R.; Minniti D.; Lane R.R.; Fernández-Alvar E.; Moreno E.; Pichardo B.; Pérez-Villegas A.; Schultheis M.; Roman-Lopes A.; Fuentes C.E.; Nitschelm C.; Harding P.; Bizyaev D.; Pan K.; Oravetz D.; Simmons A.; Ivans, Inese; Blanco-Cuaresma S.; Hernández J.; Alonso-Garcia J.; Valenzuela O.; Chanamé J.We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] -1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution. © 2017. The American Astronomical Society. All rights reserved.Ítem Gaia focused product release : asteroid orbital solution: properties and assessmen(EDP Sciences, 2023-12) David P.; Mignard F.; Hestroffer D.; Tanga P.; Spoto F.; Berthier J.; Pauwels T.; Roux W.; Barbier A.; Cellino A.; Carry B.; Delbo M.; Dell'oro A.; Fouron C.; Galluccio L.; Klioner S.A.; Mary N.; Muinonen K.; Ordenovic C.; Oreshina-Slezak I.; Panem C.; Petit J.-M.; Portell J.; Brown A.G.A; Thuillot W.; Vallenari A.; Prusti T.; De Bruijne J.H.J.; Arenou F.; Babusiaux C.; Biermann M.; Creevey O.L.; Ducourant C.; Evans D.W.; Eyer L.; Guerra R.; Hutton A.; Jordi C.; Lammers U.; Lindegren L.; Luri X.; Randich S.; Sartoretti P.; Smiljanic R.; Walton N.A.; Bailer-Jones C.A.L.; Bastian U.; Cropper M.; Drimmel R.; Katz D.; Soubiran C.; Van Leeuwen F.; Audard M.; Bakker J.; Blomme R.; Castañeda J.; De Angeli F.; Fabricius C.; Fouesneau M; Frémat Y.; Guerrier A.; Masana E.; Messineo R.; Nicolas C.; Nienartowicz K.; Pailler F.; Panuzzo P.; Riclet F.; Seabroke G.M.; Sordo R.; Thévenin F.; Gracia-Abril G.; Teyssier D.; Altmann M.; Benson K.; Burgess P.W.; Busonero D.; Busso G.; Cánovas H.; Cheek N.; Clementini G.; Damerdji Y.; Davidson M.; De Teodoro P.; Delchambre L.; Fraile Garcia E.; Garabato D.; García-Lario P.; Garralda Torres N.; Gavras P.; Haigron R.; Hambly N.C.; Harrison D.L.; Hatzidimitriou D.; Hernández J.; Hodgkin S.T.; Holl B.; Jamal S.; Jordan S.; Krone-Martins A.; Lanzafame A.C.; Löffler W.; Lorca A.; Marchal O.; Marrese P.M.; Moitinho A.; Nuñez Campos M.; Osborne P.; Pancino E.; Recio-Blanco A.; Riello M.; Rimoldini L.; Robin A.C.; Roegiers T.; Sarro L.M.; Schultheis M.; Siopis C.; Smith M.; Sozzetti A.; Utrilla E.; Van Leeuwen M.; Weingrill K.; Abbas U.; Ábrahám P.; Abreu Aramburu A.; Aerts C.; Altavilla G.; Álvarez M.A.; Alves J.; Anderson R.I.; Antoja T.; Baines D.; Baker S.G.; Balog Z.; Barache C.; Barbato D.; Barros M.; Barstow M.A.; Bartolomé S.; Bashi D.; Bauchet N.; Baudeau N.; Becciani U.; Bedin L.R.; Bellas-Velidis I.; Bellazzini M.; Beordo W.; Berihuete A.; Bernet M.; Bertolotto C.; Bertone S.; Bianchi L.; Binnenfeld A.; Blazere A.; Boch T.; Bombrun A.; Bouquillon S.; Bragaglia A.; Braine J.; Bramante L.; Breedt E.; Bressan A.; Brouillet N.; Brugaletta E.; Bucciarelli B.; Butkevich A.G.; Buzzi R.; Caffau E.; Cancelliere R.; Cannizzo S.; Carballo R.; Carlucci T.; Carnerero M.I.; Carrasco J.M.; Carretero J.; Carton S.; Casamiquela L.; Castellani M.; Castro-Ginard A.; Cesare V.; Charlot P.; Chemin L.; Chiaramida V.; Chiavassa A.; Chornay N.; Collins R.; Contursi G.; Cooper W.J.; Cornez T.; Crosta M.; Crowley C.; Dafonte C.; De Laverny P.; De Luise F.; De March R.; De Souza R.; De Torres A.; Del Peloso E.F.; Delgado A.; Dharmawardena T.E.; Diakite S.; Diener C.; Distefano E.; Dolding C.; Dsilva K.; Durán J.; Enke H.; Esquej P.; Fabre C.; Fabrizio M.; Faigler S.; Fatović M.; Fedorets G.; Fernández-Hernández J.; Fernique P.; Figueras F.; Fournier Y.; Gai M.; Galinier M.; Garcia-Gutierrez A.; García-Torres M.; Garofalo A.; Gerlach E; Geyer R.; Giacobbe P.; Gilmore G.; Girona S.; Giuffrida G.; Gomel R.; Gomez A.; González-Núñez J.; González-Santamaría I.; Gosset E.; Granvik M.; Gregori Barrera V.; Gutiérrez-Sánchez R.; Haywood M.; Helmer A.; Helmi A.; Henares K.; Hidalgo S.L.; Hilger T.; Hobbs D.; Hottier C.; Huckle H.E.; Jabłońska M.; Jansen F.; Jiménez-Arranz Ó.; Juaristi Campillo J.; Khanna S.; Kordopatis G.; Kóspál Á.; Kostrzewa-Rutkowska Z.; Kun M.; Lambert S.; Lanza A.F.; Le Campion J.-F.; Lebreton Y.; Lebzelter T.; Leccia S.; Lecoeur-Taibi I.; Lecoutre G.; Liao S.; Liberato L.; Licata E.; Lindstrøm H.E.P.; Lister T.A.; Livanou E.; Lobel A.; Loup C.; Mahy L.; Mann R.G.; Manteiga M.; Marchant J.M.; Marconi M.; Marín Pina D.; Marinoni S.; Marshall D.J.; Martín Lozano J.; Martín-Fleitas J.M.; Marton G.; Masip A.; Massari D.; Mastrobuono-Battisti A.; Mazeh T.; McMillan P.J.; Meichsner J.; Messina S.; Michalik D.; Millar N.R.; Mints A.; Molina D.; Molinaro R.; Molnár L.; Monari G.; Monguió M.; Montegriffo P.; Montero A.; Mor R.; Mora A.; Morbidelli R.; Morel T.; Morris D.; Mowlavi N.; Munoz D.; Muraveva T.; Murphy C.P.; Musella I.; Nagy Z.; Nieto S.; Noval L.; Ogden A.; Pagani C.; Pagano I.; Palaversa L.; Palicio P.A.; Pallas-Quintela L.; Panahi A.; Payne-Wardenaar S.; Pegoraro L.; Penttilä A.; Pesciullesi P.; Piersimoni A.M.; Pinamonti M.; Pineau F.-X.; Plachy E.; Plum G.; Poggio E.; Pourbaix D.; Prša A.; Pulone L.; Racero E.; Rainer M.; Raiteri C.M.; Ramos P.; Ramos-Lerate M.; Ratajczak M.; Re Fiorentin P.; Regibo S.; Reylé C.; Ripepi V.; Riva A.; Rix H.-W.; Rixon G.; Robichon N.; Robin C.; Romero-Gómez M.; Rowell N.; Royer F.; Ruz Mieres D.; Rybicki K.A.; Sadowski G.; Sáez Núñez A.; Sagristà Sellés A.; Sahlmann J.; Sanchez Gimenez V.; Sanna N.; Santoveña R.; Sarasso M.; Sarrate Riera C.; Sciacca E.; Segovia J.C.; Ségransan D.; Shahaf S.; Siebert A.; Siltala L.; Slezak E.; Smart R.L.; Snaith O.N.; Solano E.; Solitro F.; Souami D.; Souchay J.; Spina L.; Spitoni E.; Squillante L.A.; Steele I.A.; Steidelmüller H.; Surdej J.; Szabados L.; Taris F.; Taylor M.B.; Teixeira R.; Tisanić K.; Tolomei L.; Torra F.; Torralba Elipe G.; Trabucchi M.; Tsantaki M.; Ulla A.; Unger N.; Vanel O.; Vecchiato A.; Vicente D.; Voutsinas S.; Weiler M.; Wyrzykowski Ł.; Zhao H.; Zorec J.; Zwitter T.; Balaguer-Núñez L.; Leclerc N.; Morgenthaler S.; Robert G.; Zucker S.Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, which is not expected before the end of 2025. This data set covers more than one full orbital period for the vast majority of these asteroids. The orbital solutions are derived from the Gaia data alone over a relatively short arc compared to the observation history of many of these asteroids. Aims. The work aims to produce orbital elements for a large set of asteroids based on 66 months of accurate astrometry provided by Gaia and to assess the accuracy of these orbital solutions with a comparison to the best available orbits derived from independent observations. A second validation is performed with accurate occultation timings. Methods. We processed the raw astrometric measurements of Gaia to obtain astrometric positions of moving objects with 1D sub-mas accuracy at the bright end. For each asteroid that we matched to the data, an orbit fitting was attempted in the form of the best fit of the initial conditions at the median epoch. The force model included Newtonian and relativistic accelerations to derive the observation equations, which were solved with a linear least-squares fit. Results. Orbits are provided in the form of state vectors in the International Celestial Reference Frame for 156 764 asteroids, including near-Earth objects, main-belt asteroids, and Trojans. For the asteroids with the best observations, the (formal) relative uncertainty σa/a is better than 10-10. Results are compared to orbits available from the Jet Propulsion Laboratory and MPC. Their orbits are based on much longer data arcs, but from positions of lower quality. The relative differences in semi-major axes have a mean of 5 × 10-10 and a scatter of 5 × 10-9 © The Authors 2023.Ítem The Gaia-ESO Survey: Low-α element stars in the Galactic bulge(EDP Sciences, 2017-07) Recio-Blanco A.; Rojas-Arriagada A.; De Laverny P.; Mikolaitis S.; Hill V.; Zoccali M.; Fernández-Trincado J.G.; Robin A.C.; Babusiaux C.; Gilmore G.; Randich S.; Alfaro E.; Allende Prieto C.; Bragaglia A.; Carraro G.; Jofré P.; Lardo C.; Monaco L.; Morbidelli L.; Zaggia S.We take advantage of the Gaia-ESO Survey iDR4 bulge data to search for abundance anomalies that could shed light on the composite nature of the Milky Way bulge. The α-element (Mg, Si, and whenever available, Ca) abundances, and their trends with Fe abundances have been analysed for a total of 776 bulge stars. In addition, the aluminum abundances and their ratio to Fe and Mg have also been examined. Our analysis reveals the existence of low-α element abundance stars with respect to the standard bulge sequence in the [α/ Fe] versus [Fe/H] plane. Eighteen objects present deviations in [α/ Fe] ranging from 2.1 to 5.3σ with respect to the median standard value. Those stars do not show Mg-Al anti-correlation patterns. Incidentally, this sign of the existence of multiple stellar populations is reported firmly for the first time for the bulge globular cluster NGC 6522. The identified low-α abundance stars have chemical patterns that are compatible with those of the thin disc. Their link with massive dwarf galaxies accretion seems unlikely, as larger deviations in α abundance and Al would be expected. The vision of a bulge composite nature and a complex formation process is reinforced by our results. The approach used, which is a multi-method and model-driven analysis of high resolution data, seems crucial to reveal this complexity. © ESO, 2017.