Logotipo del repositorio
  • Español
  • English
  • Iniciar sesión
    Ayuda

    Instrucciones:

    El Repositorio Institucional Académico (RIA) de la Universidad Andrés Bello, es un recurso de acceso abierto. No obstante, y de acuerdo con la ley chilena vigente sobre propiedad intelectual, mantiene en acceso restringido diversos documentos, los cuales sólo pueden ser consultados por la comunidad universitaria registrada. Para poder acceder a éstos, verificar el tipo de usuario y método de acceso, siguiendo las instrucciones que se detallan a continuación:

    • Si eres investigador, docente o funcionario con correo @unab.cl, ingresa utilizando tu usuario de computador o intranet (nombre de usuario sin incluir @unab.cl) y clave.
    • Si eres alumno, profesor adjunto o exalumno con correo @uandresbello.edu, debes registrarte primero, pinchando donde dice Nuevo usuario. Una vez registrado y obtenida el alta, ingresa con el correo electrónico institucional y la clave elegida. El registro se debe realizar utilizando la cuenta de correo institucional, no serán válidas cuentas gmail, hotmail o cualquier otro proveedor.
    • Si eres usuario externo, contactar directamente a repositorio@unab.cl
    o
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo RIA
  • Contacto
  • Procedimientos de publicaciónDerecho de autorPolíticas del Repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Sanhueza, Dayan"

Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Beyond purified dietary fibre supplements: Compositional variation between cell wall fibre from different plants influences human faecal microbiota activity and growth in vitro
    (John Wiley and Sons Inc, 2023-08) Solvang, Michael; Farquharson, Freda M.; Sanhueza, Dayan; Horgan, Graham; Russell, Wendy R.; Louis, Petra
    Dietary fibre is a major energy source for the human gut microbiota, but it is unclear to what extent the fibre source and complexity affect microbial growth and metabolite production. Cell wall material and pectin were extracted from five different dicotyledon plant sources, apples, beet leaves, beetroots, carrots and kale, and compositional analysis revealed differences in the monosaccharide composition. Human faecal batch incubations were conducted with 14 different substrates, including the plant extracts, wheat bran and commercially available carbohydrates. Microbial activity was determined for up to 72 h by measuring gas and fermentation acid production, total bacteria (by qPCR) and microbial community composition by 16S rRNA amplicon sequencing. The more complex substrates gave rise to more microbiota variation compared with the pectins. The comparison of different plant organs showed that the leaves (beet leaf and kale) and roots (carrot and beetroot) did not give rise to similar bacterial communities. Rather, the compositional features of the plants, such as high arabinan levels in beet and high galactan levels in carrot, appear to be major predictors of bacterial enrichment on the substrates. Thus, in-depth knowledge on dietary fibre composition should aid the design of diets focused on optimizing the microbiota. © 2023 The Authors. Environmental Microbiology published by Applied Microbiology International and John Wiley & Sons Ltd.
  • Cargando...
    Miniatura
    Ítem
    Comparative study of two table grape varieties with contrasting texture during cold storage
    (MDPI AG, 2015-03) Ejsmentewicz, Troy; Balic, Iván; Sanhueza, Dayan; Barria, Romina; Meneses, Claudio; Orellana, Ariel; Prieto, Humberto; Defilippi, Bruno G.; Campos-Vargas, Reinaldo
    Postharvest softening of grape berries is one of the main problems affecting grape quality during export. Cell wall disassembly, especially of pectin polysaccharides, has been commonly related to fruit softening, but its influence has been poorly studied in grapes during postharvest life. In order to better understand this process, the Thompson seedless (TS) variety, which has significantly decreased berry texture after prolonged cold storage, was compared to NN107, a new table grape variety with higher berry firmness. Biochemical analysis revealed a greater amount of calcium in the cell wall of the NN107 variety and less reduction of uronic acids than TS during cold storage. In addition, the activity of polygalacturonase was higher in TS than NN107 berries; meanwhile pectin methylesterase activity was similar in both varieties. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) suggests a differential pectin metabolism during prolonged cold storage. Results revealed lower pectin fragments in TS after 60 days of cold storage and shelf life (SL) compared to 30 days of cold storage and 30 + SL, while NN107 maintained the same fragment profile across all time points evaluated. Our results suggest that these important differences in cell wall metabolism during cold storage could be related to the differential berry firmness observed between these contrasting table grape varieties. © 2015 by the authors
  • Cargando...
    Miniatura
    Ítem
    GoSAMTs are required for pectin methyl-esterification and mucilage release in seed coat epidermal cells
    (Frontiers Media S.A., 2023-01) Parra-Rojas, Juan Pablo; Sepúlveda-Orellana, Pablo; Sanhueza, Dayan; Salinas-Grenet, Hernán; Temple, Henry; Dupree, Paul; Saez-Aguayo, Susana; Orellana, Ariel
    Introduction: GoSAMTs play a role in the methylation of polysaccharides synthesized by the Golgi. Pectin homogalacturonan (HG) methyl-esterification is essential for the proper function of this polysaccharide in cell walls. In order to better understand the role of GoSAMTs in HG biosynthesis, we analyzed mucilage methyl-esterification in gosamt mutants. Methods: To determine the function of GoSAMT1 and GoSAMT2 in HG methyl-esterification we utilized epidermal cells of seed coats, as these structures produce mucilage, which is a pectic matrix. We evaluated differences in seed surface morphology and quantified mucilage release. We measured methanol release, and used antibodies and confocal microscopy to analyze HG methyl-esterification in mucilage. Results: We observed morphological differences on the seed surface and delayed, uneven mucilage release in gosamt1-1gosamt2-1 double mutants. We also found changes in the distal wall length indicating abnormal cell wall breakage in this double mutant. Using methanol release and immunolabeling, we confirmed that GoSAMT1 and GoSAMT2 are involved in HG methyl-esterification in mucilage. However, we did not find evidence of decreasing HG in the gosamt mutants. Confocal microscopy analyses detected different patterns in the adherent mucilage and a greater number of low-methyl-esterified domains near the seed coat surface, which correlates with a greater number of “egg-box” structures in this region. We also detected a shift in the partitioning between the Rhamnogalacturonan-I soluble and adherent layers of the double mutant, which correlated with increased amounts of arabinose and arabinogalactan-protein in the adherent mucilage. Discussion: The results show that the HG synthesized in gosamt mutant plants is less methyl esterified, resulting in more egg-box structures, which stiffen the cell walls in epidermal cells and change the rheological properties of the seed surface. The increased amounts of arabinose and arabinogalactan-protein in adherent mucilage, also suggests that compensation mechanisms were triggered in the gosamt mutants. Copyright © 2023 Parra-Rojas, Sepúlveda-Orellana, Sanhueza, Salinas-Grenet, Temple, Dupree, Saez-Aguayo and Orellana.
  • Cargando...
    Miniatura
    Ítem
    Identification of grapevine clones via high-throughput amplicon sequencing: a proof-of-concept study
    (Genetics Society of America, 2023-09) Urra, Claudio; Sanhueza, Dayan; Pavez, Catalina; Tapia, Patricio; Núñez-Lillo, Gerardo; Minio, Andrea; Miossec, Matthieu; Blanco-Herrera, Francisca; Gainza, Felipe; Castro, Alvaro; Cantu, Dario; Meneses, Claudio
    Wine cultivars are available to growers in multiple clonal selections with agronomic and enological differences. Phenotypic differences between clones originated from somatic mutations that accrued over thousands of asexual propagation cycles. Genetic diversity between grape cultivars remains unexplored, and tools to discriminate unequivocally clones have been lacking. This study aimed to uncover genetic variations among a group of clonal selections of 4 important Vitis vinifera cultivars: Cabernet sauvignon, Sauvignon blanc, Chardonnay, and Merlot, and use this information to develop genetic markers to discriminate the clones of these cultivars. We sequenced with short-read sequencing technology the genomes of 18 clones, including biological replicates for a total of 46 genomes. Sequences were aligned to their respective cultivar’s reference genome for variant calling. We used reference genomes of Cabernet sauvignon, Chardonnay, and Merlot and developed a de novo genome assembly of Sauvignon blanc using long-read sequencing. On average, 4 million variants were detected for each clone, with 74.2% being single nucleotide variants and 25.8% being small insertions or deletions (InDel). The frequency of these variants was consistent across all clones. From these variants, we validated 46 clonal markers using high-throughput amplicon sequencing for 77.7% of the evaluated clones, most of them small InDel. These results represent an advance in grapevine genotyping strategies and will benefit the viticulture industry for the characterization and identification of the plant material. © The Author(s) 2023.
  • Cargando...
    Miniatura
    Ítem
    SARS-CoV-2 infection in asymptomatic healthcare workers at a clinic in Chile
    (Public Library of Science, 2021-01) Olmos, Claudio; Campaña, Gonzalo; Monreal, Victor; Pidal, Paola; Sanchez, Nannet; Airola, Constanza; Sanhueza, Dayan; Tapia, Patricio; Muñoz, Ana María; Corvalan, Felipe; Meneses, Claudio; Orellana, Ariel; Montecino, Martin; Arriagada, Gloria; Bustos, Fernando Jose
    Asymptomatic SARS-CoV-2 infection of healthcare workers (HCWs) has been reported as a key player in the nosocomial spreading of COVID-19. Early detection of infected HCWs can prevent spreading of the virus in hospitals among HCWs and patients. We conducted a cross-sectional study to determine the asymptomatic infection of HCWs in a private clinic in the city of Santiago, Chile. Our study was conducted during a period of 5 weeks at the peak of transmission of SARS-CoV-2 in Chile. Nasopharyngeal samples were obtained from 413 HCWs and tested for the presence of SARS-CoV-2 using RT-qPCR. We found that a 3.14% of HCWs were positive for the presence of SARS-CoV-2 (14/413). Out of these, 7/14 were completely asymptomatic and did not develop symptoms within 3 weeks of testing. Sequencing of viral genomes showed the predominance of the GR clade; however, sequence comparison demonstrated numerous genetic differences among them suggesting community infection as the main focus of transmission among HCWs. Our study demonstrates that the protocols applied to protect HCWs and patients have been effective as no infection clusters due to asymptomatic carriers were found in the clinic. Together, these data suggest that infection with SARS-CoV-2 among HCWs of this health center is not nosocomial. © 2021 Olmos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Cargando...
    Miniatura
    Ítem
    Transcriptomic analysis of fruit stored under cold conditions using controlled atmosphere in Prunus persica cv. “Red Pearl”
    (Frontiers Research Foundation, 2015-10) Sanhueza, Dayan; Vizoso, Paula; Balic, Iván; Campos-Vargas, Reinaldo; Meneses, Claudio
    Cold storage (CS) can induce a physiological disorder known as chilling injury (CI) in nectarine fruits. The main symptom is mealiness that is perceived as non-juicy fruit by consumers. Postharvest treatments such as controlled atmosphere (CA; a high CO2 concentration and low O2) have been used under cold conditions to avoid this disorder. With the objective of exploring the mechanisms involved in the CA effect on mealiness prevention, we analyzed transcriptomic changes under six conditions of “Red Pearl” nectarines by RNA-Seq. Our analysis included just harvested nectarines, juicy non-stored fruits, fruits affected for CI after CS and fruits stored in a combination of CA plus CS without CI phenotype. Nectarines stored in cold conditions combined with CA treatment resulted in less mealiness; we obtained 21.6% of juice content compared with just CS fruits (7.7%; mealy flesh). RNA-Seq data analyses were carried out to study the gene expression for different conditions assayed. During ripening, we detected that nectarines exposed to CA treatment expressed a similar number of genes compared with fruits that were not exposed to cold conditions. Firm fruits have more differentially expressed genes than soft fruits, which suggest that most important changes occur during CS. On the other hand, gene ontology analysis revealed enrichment mainly in metabolic and cellular processes. Differentially expressed genes analysis showed that low O2 concentrations combined with cold conditions slows the metabolic processes more than just the cold storage, resulting mainly in the suppression of primary metabolism and cold stress response. This is a significant step toward unraveling the molecular mechanism that explains the effectiveness of CA as a tool to prevent CI development on fruits. © 2015 Sanhueza, Vizoso, Balic, Campos-Vargas and Meneses.
  • No hay miniatura disponible
    Ítem
    UUAT1 is a golgi-localized UDP-uronic acid transporter that modulates the polysaccharide composition of arabidopsis seed mucilage
    (American Society of Plant Biologists, 2017) Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; Sanhueza, Dayan; Ejsmentewicz, Troy; Sandoval-Ibañez, Omar; Doñas, Daniela; Parra-Rojas, Juan Pablo; Ebert, Berit; Lehner, Arnaud; Mollet, Jean-Claude; Dupree, Paul; Scheller, Henrik V.; Heazlewood, Joshua L.; Reyes, Francisca C.; Orellana, Ariel
    UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix. © 2016 American Society of Plant Biologists.