Examinando por Autor "Santiviago, Carlos A."
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Identification and distribution of new candidate T6SS effectors encoded in Salmonella Pathogenicity Island 6(Frontiers Media SA, 2023) Blondel, Carlos J.; Amaya, Fernando A.; Bustamante, Paloma; Santiviago, Carlos A.; Pezoa, DavidThe type VI secretion system (T6SS) is a contact-dependent contractile multiprotein apparatus widely distributed in Gram-negative bacteria. These systems can deliver different effector proteins into target bacterial and/or eukaryotic cells, contributing to the environmental fitness and virulence of many bacterial pathogens. Salmonella harbors five different T6SSs encoded in different genomic islands. The T6SS encoded in Salmonella Pathogenicity Island 6 (SPI-6) contributes to Salmonella competition with the host microbiota and its interaction with infected host cells. Despite its relevance, information regarding the total number of effector proteins encoded within SPI-6 and its distribution among different Salmonella enterica serotypes is limited. In this work, we performed bioinformatic and comparative genomics analyses of the SPI-6 T6SS gene cluster to expand our knowledge regarding the T6SS effector repertoire and the global distribution of these effectors in Salmonella. The analysis of a curated dataset of 60 Salmonella enterica genomes from the Secret6 database revealed the presence of 23 new putative T6SS effector/immunity protein (E/I) modules. These effectors were concentrated in the variable regions 1 to 3 (VR1-3) of the SPI-6 T6SS gene cluster. VR1-2 were enriched in candidate effectors with predicted peptidoglycan hydrolase activity, while VR3 was enriched in candidate effectors of the Rhs family with C-terminal extensions with predicted DNase, RNase, deaminase, or ADP-ribosyltransferase activity. A global analysis of known and candidate effector proteins in Salmonella enterica genomes from the NCBI database revealed that T6SS effector proteins are differentially distributed among Salmonella serotypes. While some effectors are present in over 200 serotypes, others are found in less than a dozen. A hierarchical clustering analysis identified Salmonella serotypes with distinct profiles of T6SS effectors and candidate effectors, highlighting the diversity of T6SS effector repertoires in Salmonella enterica. The existence of different repertoires of effector proteins suggests that different effector protein combinations may have a differential impact on the environmental fitness and pathogenic potential of these strains. Copyright © 2023 Blondel, Amaya, Bustamante, Santiviago and Pezoa.Ítem Participation of the Salmonella OmpD porin in the infection of RAW264.7 macrophages and BALB/c mice(Public Library of Science, 2014) Ipinza, Francisco; Collao, Bernardo; Monsalva, Debbie; Bustamante, Victor H.; Luraschi, Roberto; Alegría-Arcos, Melissa; Almonacid, Daniel E.; Aguayo, Daniel; Calderón, Iván L.; Gil, Fernando; Santiviago, Carlos A.; Morales, Eduardo H.; Calva, Edmundo; Saavedra, Claudia P.Salmonella Typhimurium is the etiological agent of gastroenteritis in humans and enteric fever in mice. Inside these hosts, Salmonella must overcome hostile conditions to develop a successful infection, a process in which the levels of porins may be critical. Herein, the role of the Salmonella Typhimurium porin OmpD in the infection process was assessed for adherence, invasion and proliferation in RAW264.7 mouse macrophages and in BALB/c mice. In cultured macrophages, a ΔompD strain exhibited increased invasion and proliferation phenotypes as compared to its parental strain. In contrast, overexpression of ompD caused a reduction in bacterial proliferation but did not affect adherence or invasion. In the murine model, the ΔompD strain showed increased ability to survive and replicate in target organs of infection. The ompD transcript levels showed a down-regulation when Salmonella resided within cultured macrophages and when it colonized target organs in infected mice. Additionally, cultured macrophages infected with the ΔompD strain produced lower levels of reactive oxygen species, suggesting that down-regulation of ompD could favor replication of Salmonella inside macrophages and the subsequent systemic dissemination, by limiting the reactive oxygen species response of the host. © 2014 Ipinza et al.Ítem SPI-9 of Salmonella enterica serovar typhi is constituted by an operon positively regulated by RpoS and contributes to adherence to epithelial cells in culture(Microbiology Society, 2016-08) Velásquez, Juan C.; Hidalgo, Alejandro A.; Villagra, Nicolás; Santiviago, Carlos A.; Mora, Guido C.; Fuentes, Juan A.The genomic island 9 (SPI-9) from Salmonella enterica serovar Typhi (S. Typhi) carries three ORFs (STY2876, STY2877, STY2878) presenting 98 % identity with a type 1 secretory apparatus (T1SS), and a single ORF (STY2875) similar to a large RTX-like protein exhibiting repeated Ig domains. BapA, the Salmonella enterica serovar Enteritidis orthologous to S. Typhi STY2875, has been associated with biofilm formation, and is described as a virulence factor in mice. Preliminary in silico analyses revealed that S. Typhi STY2875 ORF has a 600 bp deletion compared with S. Enteritidis bapA, suggesting that S. Typhi STY2875 might be non-functional. At present, SPI-9 has not been studied in S. Typhi. We found that the genes constituting SPI-9 are arranged in an operon whose promoter was up-regulated in high osmolarity and low pH in a RpoS-dependent manner. All the proteins encoded by S. Typhi SPI-9 were located at the membrane fraction, consistent with their putative role as T1SS. Furthermore, SPI-9 contributed to adherence of S. Typhi to epithelial cells when bacteria were grown under high osmolarity or low pH. Under the test conditions, S. Typhi SPI-9 did not participate in biofilm formation. SPI-9 is functional in S. Typhi and encodes an adhesin induced under conditions normally found in the intestine, such as high osmolarity. Hence, this is an example of a locus that might be designated a pseudogene by computational approaches but not by direct biological assays.Ítem The Salmonella enterica serovar Typhi tsx gene, encoding a nucleoside-specific porin, is essential for prototrophic growth in the absence of nucleosides(American Society for Microbiology, 2005-10) Bucarey, Sergio A.; Villagra, Nicolás A.; Martinic, Mara P.; Trombert, A. Nicole; Santiviago, Carlos A.; Maulén, Nancy P.; Youderian, Philip; Mora, Guido C.The Salmonella enterica serovar Typhi tsx gene encodes a porin that facilitates the import of nucleosides. When serovar Typhi is grown under anaerobic conditions, Tsx is among the outer membrane proteins whose expression increases dramatically. This increase in expression is due, at least in part, to increased transcription and is dependent on Fnr but not on ArcA. A mutant derivative of serovar Typhi strain STH2370 with a deletion of the tsx gene is an auxotroph that requires either adenosine or thymidine for growth on minimal medium. In contrast, an otherwise isogenic nupG nupC double mutant, defective in the inner membrane nucleoside permeases, is a prototroph. Because anaerobic growth enhances the virulence of serovar Typhi in vitro, we assessed the role that the tsx gene plays in pathogenicity and found that the serovar Typhi STH2370 Δtsx mutant is defective in survival within human macrophage-like U937 cells. To understand why the Δtsx mutant is an auxotroph, we selected for insertions of minitransposon T-POP in the Δtsx genetic background that restored prototrophy. One T-POP insertion that suppressed the Δtsx mutation in the presence of the inducer tetracycline was located upstream of the pyrD gene. The results of reverse transcription-PCR analysis showed that addition of the inducer decreased the rate of pyrD transcription. These results suggest that the Tsx porin and the balance of products of the tsx and pyrD genes play critical roles in membrane assembly and integrity and thus in the virulence of serovar Typhi. Copyright © 2005, American Society for Microbiology. All Rights Reserved.Ítem Transfer of T6SSSPI-19from Salmonella Gallinarum to Salmonella Typhimurium Lacking T6SSSPI-6Complements its Colonization Defect in Mice(Sciendo, 2023-06) Pezoa, David; Blondel, Carlos J.; Amaya, Fernando A.; Santiviago, Carlos A.Salmonella genus harbors five Type VI Secretion System (T6SS) gene clusters. The T6SS encoded in SPI-6 (T6SSSPI-6) contributes to Salmonella Typhimurium colonization of chickens and mice, while the T6SS encoded in SPI-19 (T6SSSPI-19) of Salmonella Gallinarum contributes to chicken colonization. Interestingly, the T6SSSPI-19 of Salmonella Gallinarum complemented the defect in chicken colonization of a Salmonella Typhimurium strain that lacks the T6SSSPI-6, suggesting that both T6SSs are interchangeable. Here we show that the transfer of Salmonella Gallinarum T6SSSPI-19 complemented the defect in mice colonization of a Salmonella Typhimurium ΔT6SSSPI-6 strain, indicating that both T6SSs are functionally redundant during host colonization. © 2023 David Pezoa et al., published by Sciendo.