Examinando por Autor "Travisany, Dante"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem The genome sequence of the soft-rot fungus Penicillium purpurogenum reveals a high gene dosage for lignocellulolytic enzymes(Taylor and Francis Ltd., 2018-01) Mardones, Wladimir; Di Genova, Alex; Cortés, María Paz; Travisany, Dante; Maass, Alejandro; Eyzaguirre, JaimeThe high lignocellulolytic activity displayed by the soft-rot fungus Penicillium purpurogenum has made it a target for the study of novel lignocellulolytic enzymes. We have obtained a reference genome of 36.2 Mb of non-redundant sequence (11,057 protein-coding genes). The 49 largest scaffolds cover 90% of the assembly, and Core Eukaryotic Genes Mapping Approach (CEGMA) analysis reveals that our assembly captures almost all protein-coding genes. RNA-seq was performed and 93.1% of the reads aligned to the assembled genome. These data, plus the independent sequencing of a set of genes of lignocellulose-degrading enzymes, validate the quality of the genome sequence. P. purpurogenum shows a higher number of proteins with CAZy motifs, transcription factors and transporters as compared to other sequenced Penicillia. These results demonstrate the great potential for lignocellulolytic activity of this fungus and the possible use of its enzymes in related industrial applications. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Ítem Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants(BioMed Central Ltd., 2014-01) Di Genova, Alex; Almeida, Andrea M.; Muñoz-Espinoza, Claudia; Vizoso, Paula; Travisany, Dante; Moraga, Carol; Pinto, Manuel; Hinrichsen, Patricio; Orellana, Ariel; Maass, AlejandroBackground: Grapevine (Vitis vinifera L.) is the most important Mediterranean fruit crop, used to produce both wine and spirits as well as table grape and raisins. Wine and table grape cultivars represent two divergent germplasm pools with different origins and domestication history, as well as differential characteristics for berry size, cluster architecture and berry chemical profile, among others. ‘Sultanina’ plays a pivotal role in modern table grape breeding providing the main source of seedlessness. This cultivar is also one of the most planted for fresh consumption and raisins production. Given its importance, we sequenced it and implemented a novel strategy for the de novo assembly of its highly heterozygous genome. Results: Our approach produced a draft genome of 466 Mb, recovering 82% of the genes present in the grapevine reference genome; in addition, we identified 240 novel genes. A large number of structural variants and SNPs were identified. Among them, 45 (21 SNPs and 24 INDELs) were experimentally confirmed in ‘Sultanina’ and six SNPs in other 23 table grape varieties. Transposable elements corresponded to ca. 80% of the repetitive sequences involved in structural variants and more than 2,000 genes were affected in their structure by these variants. Some of these genes are likely involved in embryo development, suggesting that they may contribute to seedlessness, a key trait for table grapes. Conclusions: This work produced the first structural variants and SNPs catalog for grapevine, constituting a novel and very powerful tool for genomic studies in this key fruit crop, particularly useful to support marker assisted breeding in table grapes.Ítem Whole Genome Sequence, Variant Discovery and Annotation in Mapuche-Huilliche Native South Americans(Nature Publishing Group, 2019-12) Vidal, Elena A.; Moyano, Tomás C.; Bustos, Bernabé I.; Pérez-Palma, Eduardo; Moraga, Carol; Riveras, Eleodoro; Montecinos, Alejandro; Azócar, Lorena; Soto, Daniela C.; Vidal, Mabel; Genova, Alex Di; Puschel, Klaus; Nürnberg, Peter; Buch, Stephan; Hampe, Jochen; Allende, Miguel L.; Cambiazo, Verónica; González, Mauricio; Hodar, , Christian; Montecino, Martín; Muñoz-Espinoza, Claudia; Orellana, Ariel; Reyes-Jara, Angélica; Travisany, Dante; Vizoso, Paula; Moraga, Mauricio; Eyheramendy, Susana; Maass, Alejandro; Ferrari, Giancarlo V. De; Miquel, Juan Francisco; Gutiérrez, Rodrigo A.Whole human genome sequencing initiatives help us understand population history and the basis of genetic diseases. Current data mostly focuses on Old World populations, and the information of the genomic structure of Native Americans, especially those from the Southern Cone is scant. Here we present annotation and variant discovery from high-quality complete genome sequences of a cohort of 11 Mapuche-Huilliche individuals (HUI) from Southern Chile. We found approximately 3.1 × 10 6 single nucleotide variants (SNVs) per individual and identified 403,383 (6.9%) of novel SNVs events. Analyses of large-scale genomic events detected 680 copy number variants (CNVs) and 4,514 structural variants (SVs), including 398 and 1,910 novel events, respectively. Global ancestry composition of HUI genomes revealed that the cohort represents a sample from a marginally admixed population from the Southern Cone, whose main genetic component derives from Native American ancestors. Additionally, we found that HUI genomes contain variants in genes associated with 5 of the 6 leading causes of noncommunicable diseases in Chile, which may have an impact on the risk of prevalent diseases in Chilean and Amerindian populations. Our data represents a useful resource that can contribute to population-based studies and for the design of early diagnostics or prevention tools for Native and admixed Latin American populations. © 2019, The Author(s).