Examinando por Autor "Villanova, S."
Mostrando 1 - 20 de 25
Resultados por página
Opciones de ordenación
Ítem A Chemical and Kinematical Analysis of the Intermediate-age Open Cluster IC 166 from APOGEE and Gaia DR2(Institute of Physics Publishing, 2018-09) Schiappacasse-Ulloa, J.; Tang, B.; Fernández-Trincado, J.G.; Zamora, O.; Geisler, D.; Frinchaboy, P.; Schultheis, M.; Dell'Agli, F.; Villanova, S.; Masseron, T.; Mészáros, S.; Souto, D.; Hasselquist, S.; Cunha, K.; Smith, V.V.; García-Hernández, D.A.; Vieira, K.; Robin, A.C.; Minniti, D.; Zasowski, G.; Moreno, E.; Pérez-Villegas, A.; Lane, R.R.; Ivans, I.I.; Pan, K.; Nitschelm, C.; Santana, F.A.; Carrera, R.; Roman-Lopes, A.IC 166 is an intermediate-age open cluster (OC) (∼1 Gyr) that lies in the transition zone of the metallicity gradient in the outer disk. Its location, combined with our very limited knowledge of its salient features, make it an interesting object of study. We present the first high-resolution spectroscopic and precise kinematical analysis of IC 166, which lies in the outer disk with R GC ∼ 12.7 kpc. High-resolution H-band spectra were analyzed using observations from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment survey. We made use of the Brussels Automatic Stellar Parameter code to provide chemical abundances based on a line-by-line approach for up to eight chemical elements (Mg, Si, Ca, Ti, Al, K, Mn, and Fe). The α-element (Mg, Si, Ca, and whenever available Ti) abundances, and their trends with Fe abundances have been analyzed for a total of 13 high-likelihood cluster members. No significant abundance scatter was found in any of the chemical species studied. Combining the positional, heliocentric distance, and kinematic information, we derive, for the first time, the probable orbit of IC 166 within a Galactic model including a rotating boxy bar, and found that it is likely that IC 166 formed in the Galactic disk, supporting its nature as an unremarkable Galactic OC with an orbit bound to the Galactic plane. © 2018. The American Astronomical Society.Ítem A spectroscopic study of the globular cluster M28 (NGC 6626)(Monthly Notices of the Royal Astronomical Society, 2017-01) Villanova, S.; Moni Bidin, C.; Mauro, F.; Munoz, C.; Monaco, L.We present the abundance analysis for a sample of 17 red giant branch stars in the metal-poor globular cluster M28 based on high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, and Eu. We find a metallicity of [Fe/H]=-1.29 ± 0.01 and an a-enhancement of +0.34 ± 0.01 (errors on the mean), typical of halo globular clusters in this metallicity regime. A large spread is observed in the abundances of light elements O, Na, and Al. Mg also shows an anti-correlation with Al with a significance of 3σ. The cluster shows a Na-O anti-correlation and a Na-Al correlation. This correlation is not linear but 'segmented' and that the stars are not distributed continuously, but form at least three well-separated subpopulations. In this aspect, M28 resembles NGC 2808 that was found to host at least five sub-populations. The presence of a Mg-Al anti-correlation favour massive AGB stars as the main polluters responsible for the multiple-population phenomenon. © 2016 The Authors.Ítem A spectroscopic study of the globular Cluster NGC 4147(OXFORD UNIV PRESS, 2016-08) Villanova, S.; Monaco, L.; Moni Bidin, C.; Assmann, P.We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 +/- 0.02 and an alpha-enhancement of +0.38 +/- 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only similar to 15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.Ítem A Study of the Blue Straggler Population of the Old Open Cluster Collinder 261(Institute of Physics Publishing, 2020-02) Rain, M. J.; Carraro, G.; Ahumada, J. A.; Villanova, S.; Boffin, H.; Monaco, L.; Beccar, G.Blue stragglers (BSs) are stars located in an unexpected region of the color–magnitude diagram (CMD) of a stellar population, as they appear bluer and more luminous than the stars in the turn-off region. They are ubiquitous, since they have been found among Milky Way field stars, in open and globular clusters, and also in other galaxies of the Local Group. Here we present a study on the BS population of the old and metal-rich open cluster Collinder 261, based on Gaia DR2 data and on a multi-epoch radial velocity survey conducted with Fibre Large Array Multi Element Spectrograph (FLAMES) at the Very Large Telescope (VLT). We also analyze the radial distribution of the BS population to probe the dynamical status of the cluster. BS candidates were identified first with Gaia DR2, according to their position on the CMD, proper motions, and parallaxes. Their radial distribution was compared with those of main sequence, red giant, and red clump stars, to evaluate mass segregation. Additionally, their radial velocities (and the associated uncertainties) were compared with the mean radial velocity and velocity dispersion of the cluster. When possible, close binaries and long-period binaries were also identified, based on the radial velocity variations for the different epochs. We also looked for yellow stragglers, i.e., possible evolved BSs. We found 53 BS members of Collinder 261, six of them were already identified in previous catalogs. Among the BS candidates with radial velocity measurements, we found one long-period binary, five close-binary systems, three nonvariable stars; we also identified one yellow stragglerÍtem Abundances in a sample of turnoff and subgiant stars in NGC 6121 (M 4)(EDP Sciences, 2016-10) Spite, M.; Spite, F.; Gallagher, A.J.; Monaco, L.; Bonifacio, P.; Caffau, E.; Villanova, S.Context. The stellar abundances observed in globular clusters show complex structures, currently not yet understood. Aims. The aim of this work is to investigate the relations between the abundances of different elements in the globular cluster M 4, selected for its uniform deficiency of iron, to explore the best models explaining the pattern of these observed abundances. Moreover, in turnoff stars, the abundances of the elements are not suspected to be affected by internal mixing. Methods. In M 4, using low and moderate resolution spectra obtained for 91 turnoff (and subgiant) stars with the ESO FLAMES Giraffe spectrograph, we have extended previous measurements of abundances (of Li, C and Na) to other elements (C, Si, Ca, Sr and Ba), using model atmosphere analysis. We have also studied the influence of the choice of the microturbulent velocity. Results. Firstly, the peculiar turnoff star found to be very Li-rich in a previous paper does not show any other abundance anomalies relative to the other turnoff stars in M 4. Secondly, an anti-correlation between C and Na has been detected, the slope being significative at more than 3σ. This relation between C and Na is in perfect agreement with the relation found in giant stars selected below the RGB bump. Thirdly, the strong enrichment of Si and of the neutron-capture elements Sr and Ba, already observed in the giants in M 4, is confirmed. Finally, the relations between Li, C, Na, Sr and Ba constrain the enrichment processes of the observed stars. Conclusions. The abundances of the elements in the turnoff stars appear to be compatible with production processes by massive AGBs, but are also compatible with the production of second generation elements (like Na) and low Li produced by, for example, fast rotating massive stars.Ítem Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy(Institute of Physics Publishing, 2018-03) Hansen, C.J.; El-Souri, M.; Monaco, L.; Villanova, S.; Bonifacio, P.; Caffau, E.; Sbordone, L.Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] ) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =-1 to -3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of . Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M o. Sgr J190651.47-320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M o AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15-25 M o) is necessary to explain these patterns. The high level (0.29 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. © 2018. The American Astronomical Society. All rights reserved..Ítem Ca triplet metallicities and velocities for 12 globular clusters toward the galactic bulge(EDP Sciences, 2023-01) Geisler, D.; Parisi, M.C.; Dias, B.; Villanova, S.; Mauro, F.; Saviane, I.; Cohen, R.E.; Moni Bidin C.; Minniti, D.Globular clusters (GCs) are excellent tracers of the formation and early evolution of the Milky Way. The bulge GCs (BGCs) are particularly important because they can reveal vital information about the oldest in situ component of the Milky Way. Aims. Our aim is to derive the mean metallicities and radial velocities for 13 GCs that lie toward the bulge and are generally associated with this component. This region is observationally challenging because of high extinction and stellar density, which hampers optical studies of these and similar BGCs, making most previous determinations of these parameters quite uncertain. Methods. We used near-infrared low-resolution spectroscopy with the FORS2 instrument on the VLT to measure the wavelengths and equivalent widths of the Call triplet (CaT) lines for a number of stars per cluster. We derived radial velocities, ascertained membership, and applied known calibrations to determine metallicities for cluster members, for a mean of 11 members per cluster. Unfortunately, one of our targets, VVV-GC002, which is the closest GC to the Galactic center, turned out not to have any members in our sample. Results. We derive mean cluster RV values to 3 km s~1, and mean metallicities to 0.05 dex. We find general good agreement with previous determinations for both metallicity and velocity. On average, our metallicities are 0.07 dex more metal-rich than those of Harris (2010, arXiv: 1012.3224), with a standard deviation of the difference of 0.25 dex. Our sample has metallicities between -0.21 and -1.64. and the values are distributed between the traditional metal-rich BGC peak near [Fe/H] -0.5 and a more metal-poor peak around [Fe/H] -1.1, which has recently been identified. These latter are candidates for the oldest GCs in the Galaxy, if blue horizontal branches are present, and include BH261, NGC6401, NGC6540, NGC6642, and Terzan9. Finally, Terzan 10 is even more metal- poor. However, dynamically, Terzan 10 is likely an intruder from the halo, possibly associated with the Gaia-Enceladus or Kraken accretion events. Terzan 10 is also confirmed as an Oosterhoff type II GC based on our results. Conclusions. The CaT technique is an excellent method for deriving mean metallicities and velocities for heavily obscured GCs. Our sample provides reliable mean values for these two key properties via spectroscopy of a significant number of members per cluster for this important yet previously poorly studied sample of BGCs. We emphasize that the more metal-poor GCs are excellent candidates for being ancient relics of bulge formation. The lone halo intruder in our sample, Terzan 10. is conspicuous for also having by far the lowest metallicity, and casts doubt on the possibility of any bona fide BGCs at metallicities below about -1.5. © 2023 EDP Sciences. All rights reserved.Ítem Chemical abundance analysis of red giant branch stars in the globular cluster E3(EDP Sciences, 2018-08) Monaco, L.; Villanova, S.; Carraro, G.; Mucciarelli, A.; Moni Bidin, C.Context. Globular clusters are known to host multiple stellar populations, which are a signature of their formation process. The globular cluster E3 is one of the few low-mass globulars that is thought not to host multiple populations. Aims. We investigate red giant branch stars in E3 with the aim of providing a first detailed chemical inventory for this cluster, we determine its radial velocity, and we provide additional insights into the possible presence of multiple populations in this cluster. Methods. We obtained high-resolution FLAMES-UVES/VLT spectra of four red giant branch stars likely members of E3. We performed a local thermodynamic equilibrium abundance analysis based on one-dimensional plane parallel ATLAS9 model atmospheres. Abundances were derived from line equivalent widths or spectrum synthesis. Results. We measured abundances of Na and of iron peak (Fe, V, Cr, Ni, Mn), α(Mg, Si, Ca, Ti), and neutron capture elements (Y, Ba, Eu). The mean cluster heliocentric radial velocity, metallicity, and sodium abundance ratio are ν helio = 12.6 ± 0.4 km s -1 (σ = 0.6 ± 0.2 km s -1 ), [Fe/H] = -0.89 ± 0.08 dex, and [Na/Fe] = 0.18 ± 0.07 dex, respectively. The low Na abundance with no appreciable spread is suggestive of a cluster dominated by first-generation stars in agreement with results based on lower resolution spectroscopy. The low number of stars observed does not allow us to rule out a minor population of second-generation stars. The observed chemical abundances are compatible with the trends observed in Milky Way stars. © ESO 2018.Ítem Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy?(EDP SCIENCES, 2015-07) Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S.Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated. Aims. NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. Methods. We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population. Results. We derive a metallicity of [Fe II/H] = 2.26 +/- 0.10 for NGC 5053, and of [Fe I/H] = 1.99 +/- 0.075 and 1.97 +/- 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an alpha enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. Conclusions. The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system.Ítem Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy?(EDP Sciences, 2015-07) Sbordone, L.; Monaco, L.; Moni, Bidin C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S.Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated. Aims. NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. Methods. We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population. Results. We derive a metallicity of [Feii/H] = -2.26 ± 0.10 for NGC 5053, and of [Fe? i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an α enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. Conclusions. The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system. © ESO, 2015.Ítem Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two Distinct Populations(Institute of Physics Publishing, 2018) Fernández-Alvar, E.; Carigi, L.; Schuster, W.J.; Hayes, C.R.; Ávila-Vergara, N.; Majewski, S.R.; Allende Prieto, C.; Beers, T.C.; Sánchez, S.F.; Zamora, O.; García-Hernández, D.A.; Tang, B.; Fernández-Trincado, J.G.; Tissera, P.; Geisler, D.; Villanova, S.The formation processes that led to the current Galactic stellar halo are still under debate. Previous studies have provided evidence for different stellar populations in terms of elemental abundances and kinematics, pointing to different chemical and star formation histories (SFHs). In the present work, we explore, over a broader range in metallicity (-2.2 < [Fe H] < +0.5), the two stellar populations detected in the first paper of this series from metal-poor stars in DR13 of the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We aim to infer signatures of the initial mass function (IMF) and the SFH from the two α-to-iron versus iron abundance chemical trends for the most APOGEE-reliable α-elements (O, Mg, Si, and Ca). Using simple chemical-evolution models, we infer the upper mass limit (M up) for the IMF and the star formation rate, and its duration for each population. Compared with the low-α population, we obtain a more intense and longer-lived SFH, and a top-heavier IMF for the high-α population.Ítem Exploring the S-process History in the Galactic Disk: Cerium Abundances and Gradients in Open Clusters from the OCCAM/APOGEE Sample(Astrophysical Journal, 2022-02) Sales-Silva, J.; Daflon, S.; Cunha, K.; Souto, D.; Smith, V.; Chiappini, C.; Donor, J.; Frinchaboy, P.; García-Hernández, D.; Hayes, C.; Majewski, S.; Masseron, T.; Schiavon, R.; Weinberg, D.; Beaton, R.; Fernández-Trincado, J.; Jönsson, H.; Lane, R.; Minniti, D.; Manchado, A.; Moni, B.; Nitschelm, C.; O'Connell, J.; Villanova, S.The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/α-element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]-age plane (where X can be H, Fe, or the α-elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/α] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d[Ce/H]/d R GC being negative, while d[Ce/Fe]/d R GC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc-1 Gyr-1. Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] and [Ce/Fe] for older open clusters. The chemical pattern of Ce in open clusters across the Galactic disk is discussed within the context of s-process yields from asymptotic giant branch (AGB) stars, gigayear time delays in Ce enrichment of the interstellar medium, and the strong dependence of Ce nucleosynthesis on the metallicity of its AGB stellar sources.Ítem Infrared photometry and cat spectroscopy of globular cluster m 28 (ngc 6626)(EDP Sciences, 2021-04-01) Bidin, C. Moni; Mauro, F.; Contreras Ramos, R.; Zoccali, M.; Reinarz, Y.; Moyano, M.; González-Díaz, D.; Villanova, S.; Carraro, G.; Borissova, J.; Chené, A. N.; Cohen, R. E.; Geisler, D.; Kurtev, R.; Minniti, D.Context. Recent studies show that the inner Galactic regions host genuine bulge globular clusters, but also halo intruders, complex remnants of primordial building blocks, and objects likely accreted during major merging events. Aims. In this study we focus on the properties of M 28, a very old and massive cluster currently located in the Galactic bulge. Methods. We analysed wide-field infrared photometry collected by the VVV survey, VVV proper motions, and intermediate-resolution spectra in the calcium triplet range for 113 targets in the cluster area. Results. Our results in general confirm previous estimates of the cluster properties available in the literature. We find no evidence of differences in metallicity between cluster stars, setting an upper limit of Δ[Fe/H] < 0.08 dex to any internal inhomogeneity. We confirm that M 28 is one of the oldest objects in the Galactic bulge (13-14 Gyr). From this result and the literature data, we find evidence of a weak age-metallicity relation among bulge globular clusters that suggests formation and chemical enrichment. In addition, wide-field density maps show that M 28 is tidally stressed and that it is losing mass into the general bulge field. Conclusions. Our study indicates that M 28 is a genuine bulge globular cluster, but its very old age and its mass loss suggest that this cluster could be the remnant of a larger structure, possibly a primeval bulge building block.Ítem Intrinsic metallicity variation in the intermediate mass type ii globular cluster ngc 1261(Oxford University Press, 2021-10-01) Muñoz, C.; Geisler, D.; Villanova, S.; Sarajedini, Ata; Frelijj, H.; Vargas, C.; Monaco L.; O'connell J.Globular Clusters (GCs) are now well known to almost universally show multiple populations (MPs). The HST UV Legacy Survey of a large number of Galactic GCs in UV filters optimized to explore MPs finds that a small fraction of GCs, termed Type II, also display more complex, anomalous behaviour. Several well-studied Type II GCs show intrinsic Fe abundance variations, suggesting that the other, less well-studied, Type II GCs should also exhibit similar behaviour. Our aim is to perform the first detailed metallicity analysis of NGC 1261, an intermediate mass Type II GC, in order to determine if this object shows an intrinsic Fe variation. We determined the Fe abundance in eight red giant members using Magellan-MIKE and UVES-FLAMES high-resolution, high S/N spectroscopy. The full range of [Fe/H] for the entire sample from the spectra is from -1.05 to -1.43 dex with an observed spread σobs = 0.133 dex. Compared with the total internal error of σtot = 0.06, this indicates a significant intrinsic metallicity spread of σint = 0.119 dex. We found a very similar variation in [Fe/H] using an independent method to derive the atmospheric parameters based on near-IR photometry. More importantly, the mean metallicity of the five presumed normal metallicity stars is -1.37 ± 0.02, while that of the three presumed anomalous/high metallicity stars is -1.18 ± 0.09. This difference is significant at the ∼2.4σ level. We find indications from existing data of other Type II GCs that several of them presumed to have real metallicity spreads may in fact possess none. The minimum mass required for a GC to acquire an intrinsic Fe spread appears to be ∼105M⊙. We find no strong correlation between mass and metallicity variation for Type II GCs. The metallicity spread is also independent of the fraction of anomalous stars within the Type II GCs and of GC origin. © 2021 The Author(s).Ítem Investigating a predicted metallicity [Fe/H] variation in the Type II Globular Cluster NGC 362(Oxford University Press, 2022-09-01) Vargas, C.; Villanova, S.; Geisler, D.; Muñoz, C.; Monaco, L.; O'Connell, J.; Sarajedini, AtaNGC 362 is a non-common Type II Galactic globular cluster, showing a complex pseudo two-colour diagram or 'chromosome map'. The clear separation of its stellar populations in the colour-magnitude diagram and the distribution of the giant stars in the chromosome map strongly suggests that NGC 362 could host stars with both cluster-nominal, as well as enhanced heavy-element abundances, and one of them could be iron. However, despite previous spectroscopic observations of NGC 362, no such iron variation has been detected. Our main goal is to confirm or disprove this result by searching for any internal variation of [Fe/H], which would give us insight into the formation and evolution of this interesting globular cluster. In this paper, we present the abundance analysis for a sample of 11 red giant branch members based on high-resolution and high S/N spectra obtained with the MIKE echelle spectrograph mounted at the Magellan-Clay telescope. HST and GAIA photometry and astrometry has been used to determine atmospheric parameters and membership. We obtained Teff, log(g), and vt for our target stars and measured the mean iron content of the sample and its dispersion with three different methods, which lead to [Fe/H]1 =-1.10±0.02, [Fe/H]2 =-1.09 ±0.01, and [Fe/H]3 =-1.10 ±0.01, while the internal dispersion turned out to be σ[ Fe/H ]1 = 0.06 ±0.01, σ[Fe/H ]2 = 0.03 ±0.01, and σ[ Fe/H ]3 = 0.05 ±0.01, respectively. The error analysis gives an internal dispersion due to observational error of 0.05 dex. Comparing the observed dispersion with the internal errors, we conclude that NGC 362 does not show any trace of an internal iron spread. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Ítem Lithium abundance in lower red giant branch stars of Omega Centauri(EDP Sciences, 2018-10) Mucciarelli, A.; Salaris, M.; Monaco, L.; Bonifacio, P.; Fu, X.; Villanova, S.We present Li, Na, Al, and Fe abundances of 199 lower red giant branch star members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ∼ 1 dex with a prominent tail towards lower values. The peak of the distribution well agrees with the lithium abundances measured in lower red giant branch stars in globular clusters and Galactic field stars. Stars with A(Li) ∼ 1 dex are found at metallicities lower than [Fe/H] ∼ -1.3 dex but they disappear at higher metallicities. On the other hand, Li-poor stars are found at all metallicities. The most metal-poor stars exhibit a clear Li-Na anti-correlation, where about 30% of the sample have A(Li) lower than ∼0.8 dex, while these stars represent a small fraction of normal globular clusters. Most of the stars with [Fe/H] > -1.6 dex are Li poor and Na rich. The Li depletion measured in these stars is not observed in globular clusters with similar metallicities and we demonstrate that it is not caused by the proposed helium enhancements and/or young ages. Hence, these stars formed from a gas already depleted in lithium. Finally, we note that Omega Centauri includes all the populations (Li-normal/Na-normal, Li-normal/Na-rich, and Li-poor/Na-rich stars) observed, to a lesser extent, in mono-metallic GCs. © ESO 2018.Ítem Lithium on the lower red giant branch of five Galactic globular clusters(EDP Sciences, 2022-01-01) Aguilera-Gómez, C.; Monaco, L.; Mucciarelli, A.; Salaris, M.; Villanova, S.; Pancino, E.Context. Lithium is one of the few elements produced during Big Bang nucleosynthesis in the early universe. Moreover, its fragility makes it useful as a proxy for stellar environmental conditions. As such, the lithium abundance in old systems is at the core of various astrophysical investigations. Aims. Stars on the lower red giant branch are key to studies of globular clusters where main sequence stars are too faint to be observed. We use these stars to analyze the initial Li content of the clusters and compare it to cosmological predictions, to measure spreads in Li between different stellar populations, and to study signs of extra depletion in these giants. Methods. We used the GIRAFFE spectra to measure the lithium and sodium abundances of lower red giant branch stars in five globular clusters. These cover an extensive range in metallicity, from [Fe/H] ∼-0.7 to [Fe/H] ∼-2.3 dex. Results. We find that the lithium abundance in these lower red giant branch stars forms a plateau, with values from A(Li)NLTE = 0.84 to 1.03 dex, showing no clear correlation with metallicity. When using stellar evolutionary models to calculate the primordial abundance of these clusters, we recover values of A(Li)NLTE = 2.1 - 2.3 dex, consistent with the constant value observed in warm metal-poor halo stars, namely the Spite plateau. Additionally, we find no difference in the lithium abundance of first and second population stars in each cluster. We also report the discovery of a Li-rich giant in the cluster NGC 3201, with A(Li)NLTE = 1.63 ± 0.18 dex, where the enrichment mechanism is probably pollution from external sources.Ítem NGC 6791: A Probable Bulge Cluster without Multiple Populations(Institute of Physics Publishing, 2018-11) Villanova, S.; Carraro, G.; Geisler, D.; Monaco, L.; Assmann, P.NGC 6791 is a unique stellar cluster, key to our understanding of both the multiple stellar population phenomenon and the evolution and assembly of the Galaxy. However, despite many investigations, its nature is still very controversial. Geisler et al. found evidence suggesting that it was the first open cluster to possess multiple populations, but several subsequent studies did not corroborate this. It has also been considered a member of the thin or thick disk or even the bulge, and either as an open or globular cluster or even the remnant of a dwarf galaxy. Here we present and discuss detailed abundances derived from high-resolution spectra obtained with UVES at VLT and HIRES at Keck of 17 evolved stars of this cluster. We obtained a mean [Fe/H] = +0.313 ±0.005, in good agreement with recent estimates, and with no indication of star-to-star metallicity variation, as expected. We also did not find any variation in Na, in spite of having selected the very same stars as in Geisler et al., where an Na variation was claimed. This points to the presence of probable systematics in the lower-resolution spectra of this very high metallicity cluster analyzed in that work. In fact, we find no evidence for an intrinsic spread in any element, corroborating recent independent APOGEE data. The derived abundances indicate that NGC 6791 very likely formed in the Galactic bulge and that the proposed association with the thick disk is unlikely, despite its present Galactic location. We confirm the most recent hypothesis suggesting that the cluster could have formed in the bulge and radially migrated to its current location, which appears to be the best explanation for this intriguing object. © 2018. The American Astronomical Society. All rights reserved.Ítem Sulfur abundances in three Galactic clusters: Ruprecht 106, Trumpler 5, and Trumpler 20(Astronomy and Astrophysics, 2023-03-01) Lucertini, F.; Monaco, L.; Caffau, E.; Mucciarelli, A.; Villanova, S.; Bonifacio, P.; Sbordone, L.Context. Sulfur (S) is one of the lesser-studied α-elements. Published investigations of its behavior have so far focused on local stars, and only a few clusters of the Milky Way have been considered to study this topic. We aim to study the S content of the globular cluster Ruprecht 106 which has never before been studied for this purpose, but is known to present low levels of the [α/Fe] abundance ratio and the open cluster Trumpler 5. The only star studied so far in Trumpler 5 shows an unexpectedly low abundance of S. Aims. With this work, we aim to provide the first S abundance in Ruprecht 106 and to investigate the S content of Trumpler 5 with a larger sample of stars. The open cluster Trumpler 20 is considered as a reference object. Methods. We performed a standard abundance analysis based on 1D model atmospheres in local thermodynamical equilibrium (LTE) and on high-resolution and high-signal-to-noise-ratio UVES-slit and UVES/FLAMES spectra. We also applied corrections for nonLTE. The metallicities of the targets were obtained by studying equivalent widths. Sulfur abundances were derived from multiplets 1, 6, and 8 by spectrosynthesis. Results. We find that the metallicities of Ruprecht 106 and Trumpler 5 are [Fe/H] = 1.37±0.11 and [Fe/H] = 0.49±0.14, respectively. Ruprecht 106 is less S-rich than the other Galactic clusters at similar metallicity. The low S content of Ruprecht 106, [S/Fe]NLTE = 0.52±0.13, is consistent with its shortage of α-elements. This supports an extra-galactic origin of this cluster. We obtained a new and more robust S content value of Trumpler 5 of about [S/Fe]NLTE = 0.05±0.20. According to our results, Trumpler 5 follows the trend of the Galactic disk in the [S/Fe]LTE versus [Fe/H] diagram. Our results for Trumpler 20, of namely [Fe/H]= 0.06±0.15 and [S/Fe]NLTE = 0.28±0.21, are in agreement with those in the literature.Ítem The Blue Straggler Population of the Open Clusters Trumpler 5, Trumpler 20, and NGC 2477(IOP Publishing Ltd, 2020-01) Rain, M. J.; Carraro, G.; Ahumada, J. A.; Villanova, S.; Boffin, H.; Monaco, L.We present a study based on Gaia DR2 of the population of blue straggler stars in the open clusters Trumpler 5, Trumpler 20, and NGC 2477. All candidates were selected according to their position in the color-magnitude diagram, their proper motion components, and their parallax. We also looked for yellow stragglers, i.e., possible evolved blue stragglers. We found that Trumpler 5 hosts a large blue straggler star population, which allowed us to analyze their radial distribution as a probe of the cluster's dynamical status. The blue straggler star distribution was compared with that of red giant branch stars to evaluate mass segregation. Our results indicate that blue straggler stars are not more centrally concentrated than red giant branch stars stars in any of the clusters. The radial distribution of blue straggler stars in Trumpler 5 is flat. Additionally, using a multi-epoch radial velocity survey conducted with the high-resolution spectrograph FLAMES/GIRAFFE at the Very Large Telescope, we measured the radial velocities of a sample of stragglers to compare with the mean radial velocity and velocity dispersion of the clusters. Based on the radial velocity variations for different epochs, we roughly classified these stars as possible close or long-period binaries. © 2020. The American Astronomical Society. All rights reserved.