Infrared photometry and cat spectroscopy of globular cluster m 28 (ngc 6626)

No hay miniatura disponible
Fecha
2021-04-01
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Nombre de Curso
Licencia CC
CC BY 4.0 DEED Attribution 4.0 International
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.en
Resumen
Context. Recent studies show that the inner Galactic regions host genuine bulge globular clusters, but also halo intruders, complex remnants of primordial building blocks, and objects likely accreted during major merging events. Aims. In this study we focus on the properties of M 28, a very old and massive cluster currently located in the Galactic bulge. Methods. We analysed wide-field infrared photometry collected by the VVV survey, VVV proper motions, and intermediate-resolution spectra in the calcium triplet range for 113 targets in the cluster area. Results. Our results in general confirm previous estimates of the cluster properties available in the literature. We find no evidence of differences in metallicity between cluster stars, setting an upper limit of Δ[Fe/H] < 0.08 dex to any internal inhomogeneity. We confirm that M 28 is one of the oldest objects in the Galactic bulge (13-14 Gyr). From this result and the literature data, we find evidence of a weak age-metallicity relation among bulge globular clusters that suggests formation and chemical enrichment. In addition, wide-field density maps show that M 28 is tidally stressed and that it is losing mass into the general bulge field. Conclusions. Our study indicates that M 28 is a genuine bulge globular cluster, but its very old age and its mass loss suggest that this cluster could be the remnant of a larger structure, possibly a primeval bulge building block.
Notas
Indexación: Scopus
Palabras clave
Galaxy: Bulge, Globular clusters: General, Globular clusters: Individual: M28
Citación
Astronomy and Astrophysics Volume 648 1 April 2021 Article number A18
DOI
10.1051/0004-6361/202039192
Link a Vimeo