Genes and pathways for CO2fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans

No hay miniatura disponible
Fecha
2010
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
BMC
Nombre de Curso
Licencia CC
CC BY 2.0 ATTRIBUTION 2.0 GENERIC Deed
Licencia CC
https://creativecommons.org/licenses/by/2.0/
Resumen
Background. Acidithiobacillus ferrooxidans is chemolithoautotrophic -proteobacterium that thrives at extremely low pH (pH 1-2). Although a substantial amount of information is available regarding CO2uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results. Four gene clusters (termed cbb1-4) in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson- Bassham (CBB) cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39) and the CO2- concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA) were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs) confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19). Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO 2fixation and tryptophan biosynthesis. The presence of a form II RubisCO could promote the ability of A. ferrooxidans to fix CO2at different concentrations of CO2. Conclusions. A. ferrooxidans has features of cbb gene organization for CO2-assimilating functions that are characteristic of obligate chemolithoautotrophs and distinguish this group from facultative autotrophs. The most conspicuous difference is a separate operon for the cbbP gene. It is hypothesized that this organization may provide greater flexibility in the regulation of expression of genes involved in inorganic carbon assimilation. © 2010 Esparza et al; licensee BioMed Central Ltd.
Notas
INDEXACIÓN: SCOPUS.
Palabras clave
Acidithiobacillus, Acids, Bacterial Proteins, Biosynthetic Pathways, Carbon Dioxide, Chemoautotrophic Growth, Gene Expression Regulation, Bacterial, Molecular Sequence Data, Operon, Photosynthesis, Phylogeny, Sequence Alignment
Citación
BMC Microbiology, Volume 10, 2010, Article number 229
DOI
10.1186/1471-2180-10-229
Link a Vimeo