Chern-Weil theorem, Lovelock Lagrangians in critical dimensions, and boundary terms in gravity actions

dc.contributor.authorDeruelle, N.
dc.contributor.authorMerino, N.
dc.contributor.authorOlea, R.
dc.date.accessioned2019-12-03T16:58:33Z
dc.date.available2019-12-03T16:58:33Z
dc.date.issued2018-08
dc.descriptionIndexación: Scopus.es
dc.description.abstractIn this paper we show how to translate into tensorial language the Chern-Weil theorem for the Lorentz symmetry, which equates the difference of the Euler densities of two manifolds to the exterior derivative of a transgression form. For doing so we need to introduce an auxiliary, hybrid manifold whose geometry we construct explicitly. This allows us to find the vector density, constructed out of spacetime quantities only, whose divergence is the exterior derivative of the transgression form. As a consequence we can show how the Einstein-Hilbert, Gauss-Bonnet and, in general, the Euler scalar densities can be written as the divergences of genuine vector densities in the critical dimensions D=2, 4, etc. As Lovelock gravity is a dimensional continuation of Euler densities, these results are of relevance for Gauss-Bonnet and, in general, Lovelock gravity. Indeed, these vectors which can be called generalized Katz vectors ensure, in particular, a well-defined variational principle with Dirichlet boundary conditions. © 2018 American Physical Society.es
dc.description.urihttps://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.044031
dc.identifier.citationPhysical Review D, 98(4), art. no. 044031.es
dc.identifier.issn2470-0010
dc.identifier.otherDOI: 10.1103/PhysRevD.98.044031
dc.identifier.urihttp://repositorio.unab.cl/xmlui/handle/ria/11047
dc.language.isoenes
dc.publisherAmerican Physical Societyes
dc.titleChern-Weil theorem, Lovelock Lagrangians in critical dimensions, and boundary terms in gravity actionses
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Deruelle-2018-Chern-weil-theorem-lovelock-lagrang.pdf
Tamaño:
266.96 KB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLES
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: