The ALMA Frontier Fields Survey: I. 1.1 mm continuum detections in Abell 2744, MACS J0416.1-2403 and MACS J1149.5+2223

No hay miniatura disponible
Fecha
2017
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Nombre de Curso
Licencia CC
Attribution 4.0 International CC BY 4.0 Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.en
Resumen
Context. Dusty star-forming galaxies are among the most prodigious systems at high redshift (z> 1), characterized by high starformation rates and huge dust reservoirs. The bright end of this population has been well characterized in recent years, but considerable uncertainties remain for fainter dusty star-forming galaxies, which are responsible for the bulk of star formation at high redshift and thus play a key role in galaxy growth and evolution. Aims. In this first paper of our series, we describe our methods for finding high redshift faint dusty galaxies using millimeter observations with ALMA. Methods. We obtained ALMA 1.1mm mosaic images for three strong-lensing galaxy clusters from the Frontier Fields Survey, which constitute some of the best studied gravitational lenses to date. The 20 20 mosaics overlap with the deep HST WFC3/IR footprints and encompass the high magnification regions of each cluster for maximum intrinsic source sensitivity. The combination of extremely high ALMA sensitivity and the magnification power of these clusters allows us to systematically probe the sub-mJy population of dusty star-forming galaxies over a large surveyed area. Results. We present a description of the reduction and analysis of the ALMA continuum observations for the galaxy clusters Abell 2744 (z = 0:308), MACS J0416.1-2403 (z = 0:396) and MACS J1149.5+2223 (z = 0:543), for which we reach observed rms sensitivities of 55, 59 and 71 Jy beam-1 respectively.We detect 12 dusty star-forming galaxies at S=N 5:0 across the three clusters, all of them presenting coincidence with near-infrared detected counterparts in the HST images. None of the sources fall close to the lensing caustics, thus they are not strongly lensed. The observed 1.1mm flux densities for the total sample of galaxies range from 0.41 to 2.82 mJy, with observed effective radii spanning .00:005 to 00:037 00:021. The lensing-corrected sizes of the detected sources appear to be in the same range as those measured in brighter samples, albeit with possibly larger dispersion. © ESO 2016.
Notas
Indexación: Scopus
Palabras clave
Galaxies: High-redshift, Gravitational lensing: Strong, Submillimeter: Galaxies
Citación
Astronomy and Astrophysics Volume 5971 January 2017 Article number A41
DOI
10.1051/0004-6361/201628806
Link a Vimeo