Clique immersions and independence number

dc.contributor.authorBustamante, Sebastián
dc.contributor.authorQuiroz, Daniel A.
dc.contributor.authorStein, Maya
dc.contributor.authorZamora, José
dc.date.accessioned2023-04-11T21:58:44Z
dc.date.available2023-04-11T21:58:44Z
dc.date.issued2022-12
dc.descriptionIndexación: Scopus.es
dc.description.abstractThe analogue of Hadwiger's conjecture for the immersion order states that every graph G contains Kχ(G) as an immersion. If true, this would imply that every graph with n vertices and independence number α contains K⌈[Formula presented]⌉ as an immersion. The best currently known bound for this conjecture is due to Gauthier, Le and Wollan, who recently proved that every graph G contains an immersion of a clique on ⌈[Formula presented]⌉ vertices. Their result implies that every n-vertex graph with independence number α contains an immersion of a clique on ⌈[Formula presented]−1.13⌉ vertices. We improve on this result for all α≥3, by showing that every n-vertex graph with independence number α≥3 contains an immersion of a clique on ⌊[Formula presented]⌋−1 vertices, where f is a nonnegative function. © 2022es
dc.description.urihttps://www-sciencedirect-com.recursosbiblioteca.unab.cl/science/article/pii/S0195669822000464?via%3Dihub
dc.identifier.citationEuropean Journal of CombinatoricsOpen AccessVolume 106December 2022 Article number 103550es
dc.identifier.doi10.1016/j.ejc.2022.103550
dc.identifier.issn0195-6698
dc.identifier.urihttps://repositorio.unab.cl/xmlui/handle/ria/48451
dc.language.isoenes
dc.publisherAcademic Presses
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectHadwiger's Conjecturees
dc.subjectConnected Graphes
dc.subjectGraphes
dc.titleClique immersions and independence numberes
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Bustamante_Clique_immersions_and_independence_number.pdf
Tamaño:
416.01 KB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLES
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: