Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger

dc.contributor.authorPian, E.
dc.contributor.authorD'Avanzo, P.
dc.contributor.authorBenetti, S.
dc.contributor.authorBranchesi, M.
dc.contributor.authorBrocato, Campana S.
dc.contributor.authorCappellaro, E.
dc.contributor.authorCovino, S.
dc.contributor.authorD'Elia, V.
dc.contributor.authorFynbo, J.P.U.
dc.contributor.authorGetman, F.
dc.contributor.authorGhirlanda, G.
dc.contributor.authorGhisellini, G.
dc.contributor.authorGrado, A.
dc.contributor.authorGreco, G.
dc.contributor.authorHjorth, J.
dc.contributor.authorKouveliotou, C.
dc.contributor.authorLevan, A.
dc.contributor.authorLimatola, L.
dc.contributor.authorMalesani, D.
dc.contributor.authorMazzali, P.A.
dc.contributor.authorMelandri, A.
dc.contributor.authorMøller, P.
dc.contributor.authorNicastro, L.
dc.contributor.authorPalazzi, E.
dc.contributor.authorPiranomonte, S.
dc.contributor.authorRossi, A.
dc.contributor.authorSalafia, O.S.
dc.contributor.authorSelsing, J.
dc.contributor.authorStratta, G.
dc.contributor.authorTanaka, M.
dc.contributor.authorTanvir, N.R.
dc.contributor.authorTomasella, L.
dc.contributor.authorWatson, D.
dc.contributor.authorYang, S.
dc.contributor.authorAmati, L.
dc.contributor.authorAntonelli, L.A.
dc.contributor.authorAscenzi, S.
dc.contributor.authorBernardini, M.G.
dc.contributor.authorBoër, M.
dc.contributor.authorBufano, F.
dc.contributor.authorBulgarelli, A.
dc.contributor.authorCapaccioli, M.
dc.contributor.authorCasella, P.
dc.contributor.authorCastro-Tirado, A.J.
dc.contributor.authorChassande-Mottin, E.
dc.contributor.authorCiolfi, R.
dc.contributor.authorCopperwheat, C.M.
dc.contributor.authorDadina, M.
dc.contributor.authorDe Cesare, G.
dc.contributor.authorDi Paola, A.
dc.contributor.authorFan, Y.Z.
dc.contributor.authorGendre, B.
dc.contributor.authorGiuffrida, G.
dc.contributor.authorGiunta, A.
dc.contributor.authorHunt, L.K.
dc.contributor.authorIsrael, G.L.
dc.contributor.authorJin, Z.-P.
dc.contributor.authorKasliwal, M.M.
dc.contributor.authorKlose, S.
dc.contributor.authorLisi, M.
dc.contributor.authorLongo, F.
dc.contributor.authorMaiorano, E.
dc.contributor.authorMapelli, M.
dc.contributor.authorMasetti, N.
dc.contributor.authorNava, L.
dc.contributor.authorPatricelli, B.
dc.contributor.authorPerley, D.
dc.contributor.authorPescalli, A.
dc.contributor.authorPiran, T.
dc.contributor.authorPossenti, A.
dc.contributor.authorPulone, L.
dc.contributor.authorRazzano, M.
dc.contributor.authorSalvaterra, R.
dc.contributor.authorSchipani, P.
dc.contributor.authorSpera, M.
dc.contributor.authorStamerra, A.
dc.contributor.authorStella, L.
dc.contributor.authorTagliaferri, G.
dc.contributor.authorTesta, V.
dc.contributor.authorTroja, E.
dc.contributor.authorTuratto, M.
dc.contributor.authorVergani, S.D.
dc.contributor.authorVergani, D.
dc.date.accessioned2023-10-24T15:02:05Z
dc.date.available2023-10-24T15:02:05Z
dc.date.issued2017-11
dc.descriptionIndexación: Scopuses
dc.description.abstractThe merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of γ-rays, a gravitational-wave signal, and a transient optical-near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process)1-3. Such transients, named 'macronovae' or 'kilonovae'4-7, are believed to be centres of production of rare elements such as gold and platinum8. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short γ-ray burst9,10 at redshift z = 0.356, although findings indicating bluer events have been reported11. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational-wave source12 GW170817 and γ-ray burst13,14 GRB 170817A associated with a galaxy at a distance of 40 megaparsecs from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models15,16. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum, indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03 to 0.05 solar masses of material, including high-opacity lanthanides. © 2017 Macmillan Publishers Limited, part of Springer Nature.es
dc.description.urihttps://www-nature-com.recursosbiblioteca.unab.cl/articles/nature24298
dc.identifier.citationNature Volume 551, Issue 7678, Pages 67 - 702 November 2017es
dc.identifier.doi10.1038/nature24298
dc.identifier.issn0028-0836
dc.identifier.urihttps://repositorio.unab.cl/xmlui/handle/ria/53581
dc.language.isoenes
dc.publisherNature Publishing Groupes
dc.rights.licenseCC BY 4.0 DEED
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.es
dc.titleSpectroscopic identification of r-process nucleosynthesis in a double neutron-star mergeres
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
WRAP-spectroscopic-identification-r-process-nucleosynthesis-Levan-2017.pdf
Tamaño:
5.72 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO EN INGLES
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: