Exploration of the interaction strength at the interface of anionic chalcogen anchors and gold (111)‐based nanomaterials

No hay miniatura disponible
Fecha
2020-06-20
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI AG
Nombre de Curso
Licencia CC
CC BY 4.0 DEED Atribución 4.0 Internacional
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Nowadays, the use of sulfur‐based ligands to modify gold‐based materials has become a common trend. Here, we present a theoretical exploration of the modulation of the chalcogenides‐gold interaction strength, using sulfur, selenium, and tellurium as anchor atoms. To characterize the chalcogenide‐gold interaction, we designed a nanocluster of 42 gold atoms (Au42) to model a gold surface (111) and a series of 60 functionalized phenyl‐chalcogenolate ligands to determine the ability of electron‐donor and ‐withdrawing groups to modulate the interaction. The analysis of the interaction was performed by using energy decomposition analysis (EDA), non‐covalent interactions index (NCI), and natural population analysis (NPA) to describe the charge transfer processes and to determine data correlation analyses. The results revealed that the magnitudes of the interaction energies increase following the order S < Se < Te, where this interaction strength can be augmented by electron‐donor groups, under the donor‐acceptor character the chalcogen–gold interaction. We also found that the functionalization in meta position leads to better control of the interaction strength than the ortho substitution due to the steric and inductive effects involved when functionalized in this position.
Notas
Indexación: Scopus
Palabras clave
Chalcogenides, Gold, Noncovalent Interaction, Supramolecular chemistry
Citación
Nanomaterials Volume 10, Issue 6, Pages 1 - 16 June 2020 Article number 1237
DOI
10.3390/nano10061237
Link a Vimeo