STRIDES: Automated uniform models for 30 quadruply imaged quasars
dc.contributor.author | Schmidt T. | |
dc.contributor.author | Treu T. | |
dc.contributor.author | Birrer S. | |
dc.contributor.author | Shajib A.J. | |
dc.contributor.author | Lemon C. | |
dc.contributor.author | Millon M. | |
dc.contributor.author | Sluse D. | |
dc.contributor.author | Agnello A. | |
dc.contributor.author | Anguita T. | |
dc.contributor.author | Auger-Williams M.W. | |
dc.contributor.author | McMahon R.G. | |
dc.contributor.author | Motta V. | |
dc.contributor.author | Spiniello C. | |
dc.contributor.author | Kayo I. | |
dc.contributor.author | Courbin F. | |
dc.contributor.author | Ertl S. | |
dc.contributor.author | Fassnacht C.D. | |
dc.contributor.author | Frieman J.A. | |
dc.contributor.author | More A. | |
dc.contributor.author | Schuldt S. | |
dc.contributor.author | Suyu S.H. | |
dc.contributor.author | Aguena M. | |
dc.contributor.author | Andrade-Oliveira F. | |
dc.contributor.author | Annis J. | |
dc.contributor.author | Bacon D. | |
dc.contributor.author | Bertin E. | |
dc.contributor.author | Brooks D. | |
dc.contributor.author | Burke D.L. | |
dc.contributor.author | Carnero Rosell A. | |
dc.contributor.author | Carrasco Kind M. | |
dc.contributor.author | Carretero J. | |
dc.contributor.author | Conselice C. | |
dc.contributor.author | Costanzi M. | |
dc.contributor.author | Da Costa L.N. | |
dc.contributor.author | Pereira M.E.S. | |
dc.contributor.author | De Vicente J. | |
dc.contributor.author | Desai S. | |
dc.contributor.author | Doel P. | |
dc.contributor.author | Everett S. | |
dc.contributor.author | Ferrero I. | |
dc.contributor.author | Friedel D. | |
dc.contributor.author | García-Bellido J. | |
dc.contributor.author | Gaztanaga E. | |
dc.contributor.author | Gruen D. | |
dc.contributor.author | Gruendl R.A. | |
dc.contributor.author | Gschwend J. | |
dc.contributor.author | Gutierrez G. | |
dc.contributor.author | Hinton S.R. | |
dc.contributor.author | Hollowood D.L. | |
dc.contributor.author | Honscheid K. | |
dc.contributor.author | James D.J. | |
dc.contributor.author | Kuehn K. | |
dc.contributor.author | Lahav O. | |
dc.contributor.author | Menanteau F. | |
dc.contributor.author | Miquel R. | |
dc.contributor.author | Palmese A. | |
dc.contributor.author | Paz-Chinchón F. | |
dc.contributor.author | Pieres A. | |
dc.contributor.author | Plazas Malagón A.A. | |
dc.contributor.author | Prat J. | |
dc.contributor.author | Rodriguez-Monroy M. | |
dc.contributor.author | Romer A.K. | |
dc.contributor.author | Sanchez E. | |
dc.contributor.author | Scarpine V. | |
dc.contributor.author | Sevilla-Noarbe I. | |
dc.contributor.author | Smith M. | |
dc.contributor.author | Suchyta E. | |
dc.contributor.author | Tarle G. | |
dc.contributor.author | To C. | |
dc.contributor.author | Varga T.N. | |
dc.date.accessioned | 2024-04-10T16:30:27Z | |
dc.date.available | 2024-04-10T16:30:27Z | |
dc.date.issued | 2023-01 | |
dc.description | Indexación: Scopus | |
dc.description.abstract | Gravitational time delays provide a powerful one-step measurement of H0, independent of all other probes. One key ingredient in time-delay cosmography are high-accuracy lens models. Those are currently expensive to obtain, both, in terms of computing and investigator time (105-106 CPU hours and ∼0.5-1 yr, respectively). Major improvements in modelling speed are therefore necessary to exploit the large number of lenses that are forecast to be discovered over the current decade. In order to bypass this roadblock, we develop an automated modelling pipeline and apply it to a sample of 31 lens systems, observed by the Hubble Space Telescope in multiple bands. Our automated pipeline can derive models for 30/31 lenses with few hours of human time and <100 CPU hours of computing time for a typical system. For each lens, we provide measurements of key parameters and predictions of magnification as well as time delays for the multiple images. We characterize the cosmography-readiness of our models using the stability of differences in the Fermat potential (proportional to time delay) with respect to modelling choices. We find that for 10/30 lenses, our models are cosmography or nearly cosmography grade (<3 per cent and 3-5 per cent variations). For 6/30 lenses, the models are close to cosmography grade (5-10 per cent). These results utilize informative priors and will need to be confirmed by further analysis. However, they are also likely to improve by extending the pipeline modelling sequence and options. In conclusion, we show that uniform cosmography grade modelling of large strong lens samples is within reach. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. | |
dc.description.uri | https://academic.oup.com/mnras/article/518/1/1260/6786285?login=true | |
dc.identifier.citation | Monthly Notices of the Royal Astronomical Society. Volume 518, Issue 1, Pages 1260 - 1300. 1 January 2023 | |
dc.identifier.doi | 10.1093/mnras/stac2235 | |
dc.identifier.issn | 0035-8711 | |
dc.identifier.uri | https://repositorio.unab.cl/handle/ria/55844 | |
dc.language.iso | en | |
dc.publisher | Oxford University Press | |
dc.subject | Distance scale | |
dc.subject | Gravitational lensing: strong | |
dc.subject | Quasars: general | |
dc.title | STRIDES: Automated uniform models for 30 quadruply imaged quasars | |
dc.type | Artículo |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Schmidt_STRIDES_Automated_uniform_models_for_2023.pdf
- Tamaño:
- 7.24 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- TEXTO COMPLETO EN INGLÉS
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: