Finite element graft stress for anteromedial portal, transtibial, and hybrid transtibial femoral drillings under anterior translation and medial rotation: an exploratory study
No hay miniatura disponible
Archivos
Fecha
2024-12
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Scientific Reports, Volume 14, Issue 1 December 2024 Article number 11922
Nombre de Curso
Licencia CC
Attribution 4.0 International
CC BY 4.0
Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
Stress concentration on the Anterior Cruciate Ligament Reconstruction (ACLr) for femoral drillings is crucial to understanding failures. Therefore, we described the graft stress for transtibial (TT), the anteromedial portal (AM), and hybrid transtibial (HTT) techniques during the anterior tibial translation and medial knee rotation in a finite element model. A healthy participant with a non-medical record of Anterior Cruciate Ligament rupture with regular sports practice underwent finite element analysis. We modeled TT, HTT, AM drillings, and the ACLr as hyperelastic isotropic material. The maximum Von Mises principal stresses and distributions were obtained from anterior tibial translation and medial rotation. During the anterior tibia translation, the HTT, TT, and AM drilling were 31.5 MPa, 34.6 Mpa, and 35.0 MPa, respectively. During the medial knee rotation, the AM, TT, and HTT drilling were 17.3 MPa, 20.3 Mpa, and 21.6 MPa, respectively. The stress was concentrated at the lateral aspect of ACLr,near the femoral tunnel for all techniques independent of the knee movement. Meanwhile, the AM tunnel concentrates the stress at the medial aspect of the ACLr body under medial rotation. The HTT better constrains the anterior tibia translation than AM and TT drillings, while AM does for medial knee rotation. © The Author(s) 2024.
Notas
Indexación: Scopus.
Palabras clave
Adult, Anterior Cruciate Ligament, Anterior Cruciate Ligament Injuries, Anterior Cruciate Ligament Reconstruction, Biomechanical Phenomena, Femur, Finite Element Analysis, Humans, Knee Joint, Male, Rotation, Stress, Mechanical, Tibia
Citación
DOI
10.1038/s41598-024-61061-y