Symmetry and compact embeddings for critical exponents in metric-measure spaces
Loading...
Date
2020-11
Authors
Profesor/a GuÃa
Facultad/escuela
Idioma
en
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press Inc.
Nombre de Curso
item.page.dc.rights
item.page.dc.rights
Abstract
We obtain a compact Sobolev embedding for H-invariant functions in compact metric-measure spaces, where H is a subgroup of the measure preserving bijections. In Riemannian manifolds, H is a subgroup of the volume preserving diffeomorphisms: a compact embedding for the critical exponents follows. The results can be viewed as an extension of Sobolev embeddings of functions invariant under isometries in compact manifolds. © 2020 Elsevier Inc.
item.page.dc.description
Indexación Scopus
Keywords
Compact embedding, Metric-measure spaces, Sobolev spaces, Ricci Curvature, Doubling Measure
Citation
Journal of Differential Equations, Volume 269, Issue 11, Pages 9819 - 983715 November 2020
DOI
10.1016/j.jde.2020.06.062