Unveiling the nature of 12 new low-luminosity Galactic globular cluster candidates

No hay miniatura disponible
Fecha
2022-03-01
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Nombre de Curso
Licencia CC
ATRIBUCIÓN/RECONOCIMIENTO 4.0 INTERNACIONAL CC BY 4.0 Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Context. The Galactic globular cluster system is incompletely known, especially in the low-latitude regions of the Galactic bulge and disk. We report the physical characterisation of 12 star clusters in the Milky Way, most of which are explored here for the first time. Aims. Our primary aim is determining their main physical parameters, such as reddening, extinction, metallicity, age, total luminosity, mean cluster proper motions (PMs), and distances, in order to reveal the physical nature of these clusters. Methods. We study the clusters using optical and near-infrared (NIR) datasets. In particular, we use the Gaia Early Data Release 3 (EDR3) PMs in order to perform a PM decontamination procedure and build final catalogues with probable members. We match the Gaia EDR3 with the VISTA Variables in the Vía Láctea extended (VVVX) survey and the Two Micron All-Sky survey (2MASS) in the NIR, in order to construct complete NIR and optical colour-magnitude diagrams (CMDs) and investigate the clusters properties. Results. The extinctions are evaluated using existing reddening maps. We find ranges spanning 0:09. AKs. 0:86 mag and 0:89. AG. 4:72 mag in the NIR and optical, respectively. Adopting standard intrinsic red clump (RC) magnitudes and extinction values, we first obtain the distance modulus for each cluster and thereafter their heliocentric distances, which range from about 4 to 20 kpc. Therefore, we are able to place these clusters at 3. RG. 14 kpc from the Galactic centre. The best PARSEC isochrone fit yields a metallicity range of-1:8 < [Fe/H] < +0:3 and an approximate age range of 2 < age < 14 Gyr. Finally, we find that all clusters have low luminosities, with-6:9 < MV <-3:5 mag. Conclusions. Based on our photometric analysis, we find both open clusters (OCs) and globular clusters (GCs) in our sample. In particular, we confirm the OC nature for Kronberger 100, while we classify Patchick 125 as a metal-poor GC, Ferrero 54 as a metalrich GC, and ESO 92-18 as a possible old OC or young GC. The classification as GC candidates is also suggested for Kronberger 99, Patchick 122, Patchick 126, Riddle 15, FSR 190, and Gaia 2. We also conclude that Kronberger 119 and Kronberger 143 might be either old OCs or young GCs. © ESO 2022.
Notas
Indexación: Scopus.
Palabras clave
Galaxy: bulge, Galaxy: center, Galaxy: stellar content, Gamma rays: stars, Globular clusters: general, Surveys
Citación
Astronomy and Astrophysics, Volume 659, 1 March 2022, Article number A155
DOI
10.1051/0004-6361/202142248
Link a Vimeo