CFT correlators from shape deformations in Cubic Curvature Gravity

No hay miniatura disponible
Fecha
2022-11
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer Science and Business Media Deutschland GmbH
Nombre de Curso
Licencia CC
Atribución 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
We find a covariant expression for the universal part of the holographic entanglement entropy which is valid for CFTs dual to generic higher curvature gravities in up to five bulk dimensions. We use this functional to compute universal coefficients of stress-tensor correlators in three-dimensional CFTs dual to Cubic Curvature Gravity. Using gauge/gravity duality, we work out an expression for the entanglement entropy of deformed entangling regions and read the coefficients from the power expansion of the entropy in the deformation parameter. In particular, we obtain the t4 coefficient of the 3-point function and exhibit a difference between the results obtained using the entanglement entropy functional for minimal and non-minimal splittings. We compare the obtained expressions for t4 derived considering both splittings with results obtained through other holographic methods which are splitting-independent. We find agreement with the result obtained from the non-minimal splitting, whereas the result derived from the minimal splitting is inconsistent and it is therefore ruled out. © 2022, The Author(s).
Notas
Indexación: Scopus.
Palabras clave
AdS-CFT Correspondence, Gauge-Gravity Correspondence
Citación
Journal of High Energy Physics, Volume 2022, Issue 11, November 2022, Article number 31
DOI
10.1007/JHEP11(2022)031
Link a Vimeo