Conditional maximum entropy and superstatistics

dc.contributor.authorDavis, Sergio
dc.date.accessioned2023-11-10T16:42:31Z
dc.date.available2023-11-10T16:42:31Z
dc.date.issued2020-11
dc.descriptionIndexación: Scopuses
dc.description.abstractSuperstatistics describes nonequilibrium steady states as superpositions of canonical ensembles with a probability distribution of temperatures. Rather than assume a certain distribution of temperature, recently [2020 J. Phys. A: Math. Theor. 53 045004] we have discussed general conditions under which a system in contact with a finite environment can be described by superstatistics together with a physically interpretable, microscopic definition of temperature. In this work, we present a new interpretation of this result in terms of the standard maximum entropy principle using conditional expectation constraints, and provide an example model where this framework can be tested.es
dc.identifier.citationJournal of Physics A: Mathematical and Theoretical Volume 53, Issue 4 4November 2020 Article number A5es
dc.identifier.doi10.1088/1751-8121/abb6afen
dc.identifier.issn1751-8113
dc.identifier.urihttps://repositorio.unab.cl/xmlui/handle/ria/53900
dc.language.isoenes
dc.publisherIOP Publishing Ltdes
dc.rights.licenseCC BY 3.0 ES DEED Atribución 3.0 Españaen
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/deed.esen
dc.subjectConditional expectationes
dc.subjectMaximum entropyes
dc.subjectSuperstatisticses
dc.titleConditional maximum entropy and superstatisticses
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
2005.01438v1.pdf
Tamaño:
133.51 KB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: