Catalases are NAD(P)H-dependent tellurite reductases

No hay miniatura disponible
Fecha
2006-12
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Public Library of Science
Nombre de Curso
Licencia CC
Attribution 2.0 Generic (CC BY 2.0)
Licencia CC
https://journals.plos.org/plosone/s/journal-information#loc-open-access
Resumen
Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO32-) to the less toxic, insoluble metal, tellurium (Te°), in vitro. An Escherichia colimutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.
Notas
Indexación: Scopus.
Palabras clave
Tellurous Acid, Telluria, Tellurite Reductase, Amino Acid Sequence, Catalase, Cattle, Drug Resistance, Bacterial, Escherichia coli, Genes, Kinetics, Liver
Citación
PLoS ONE, Volume 1, Issue 120, December 2006, Article number e70
DOI
10.1371/journal.pone.0000070
Link a Vimeo