Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term
dc.contributor.author | Deruelle, Nathalie | |
dc.contributor.author | Merino, Nelson | |
dc.contributor.author | Olea, Rodrigo | |
dc.date.accessioned | 2022-08-03T22:27:29Z | |
dc.date.available | 2022-08-03T22:27:29Z | |
dc.date.issued | 2018-05 | |
dc.description | Indexación Scopus | es |
dc.description.abstract | We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil theorem plus a dimensional continuation process, such that the extremization of the full action yields the equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial language, this boundary term is the generalization to this theory of the Katz boundary term and vector for general relativity. The boundary term constructed in this paper allows to deal with a general background and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide if one replaces the background of the Katz procedure by a product manifold. As a first application we show that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the Boulware-Deser black hole. © 2018 American Physical Society. | es |
dc.description.uri | https://journals-aps-org.recursosbiblioteca.unab.cl/prd/abstract/10.1103/PhysRevD.97.104009 | |
dc.identifier.citation | Physical Review D Volume 97, Issue 1015 May 2018 Article number 104009 | es |
dc.identifier.doi | 10.1103/PhysRevD.97.104009 | |
dc.identifier.issn | 24700010 | |
dc.identifier.uri | https://repositorio.unab.cl/xmlui/handle/ria/23441 | |
dc.language.iso | en | es |
dc.publisher | American Physical Society | es |
dc.rights.license | CC BY 3.0 CC BY 4.0 | |
dc.subject | Supergravity | es |
dc.subject | Gravitation | es |
dc.subject | Black Holes | es |
dc.title | Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term | es |
dc.type | Artículo | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Deruelle_N_Einstein_2018.pdf
- Tamaño:
- 240.64 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- TEXTO COMPLETO EN INGLÉS
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: