Use of self-organizing maps for the classification of cardiometabolic risk and physical fitness in adolescents
dc.contributor.author | Yáñez-Sepúlveda, Rodrigo | |
dc.contributor.author | Olivares, Rodrigo | |
dc.contributor.author | Ravelo, Camilo | |
dc.contributor.author | Cortés-Roco, Guillermo | |
dc.contributor.author | Zavala-Crichton, Juan Pablo | |
dc.contributor.author | Hinojosa-Torres, Claudio | |
dc.contributor.author | de Souza-Lima, Josivaldo | |
dc.contributor.author | Monsalves-Álvarez, Matías | |
dc.contributor.author | Reyes-Amigo, Tomás | |
dc.contributor.author | Hurtado-Almonacid, Juan | |
dc.contributor.author | Páez-Herrera, Jacqueline | |
dc.contributor.author | Mahecha-Matsudo, Sandra | |
dc.contributor.author | Olivares-Arancibia, Jorge | |
dc.contributor.author | Clemente-Suárez, Vicente Javier | |
dc.date.accessioned | 2025-01-24T16:44:53Z | |
dc.date.available | 2025-01-24T16:44:53Z | |
dc.date.issued | 2024 | |
dc.description | Indexación: Scopus | |
dc.description.abstract | This study aimed to automatically classify physical fitness and cardiometabolic risk in a Chilean adolescent using self-organizing maps. This cross-sectional study analysed a nationally representative database from the Physical Education Quality Measurement System (n = 7197). Physical fitness and cardiometabolic risk variables were derived from anthropometric indicators. Self-Organizing maps (SOM) were employed to identify participant profiles based on an unsupervised predictive model. After implementing and training the SOM, a detailed analysis of the generated maps was conducted to interpret the revealed relationships and clusters. The analysis resulted in three classification groups, categorizing the sample into low, moderate, and high-risk levels. Students with better physical fitness exhibited lower cardiometabolic risk levels and a lower body mass index. SOM, through an unsupervised model, is a reliable tool for classifying cardiometabolic risk and physical fitness in adolescents. © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. | |
dc.description.uri | https://www.tandfonline.com/action/showCopyRight?scroll=top&doi=10.1080%2F02673843.2024.2417903 | |
dc.description.uri | https://www.tandfonline.com/doi/full/10.1080/02673843.2024.2417903#abstract | |
dc.identifier.citation | International Journal of Adolescence and Youth. Volume 29, Issue 1. 2024. Article number 2417903 | |
dc.identifier.doi | 10.1080/02673843.2024.2417903 | |
dc.identifier.issn | 0267-3843 | |
dc.identifier.uri | https://repositorio.unab.cl/handle/ria/63270 | |
dc.language.iso | en | |
dc.publisher | Routledge | |
dc.rights.license | Attribution-NonCommercial 4.0 International Deed (CC BY-NC 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject | Big Data | |
dc.subject | Exercise | |
dc.subject | Health | |
dc.subject | Machine Learning | |
dc.title | Use of self-organizing maps for the classification of cardiometabolic risk and physical fitness in adolescents | |
dc.type | Artículo |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Use of self-organizing maps for the classification of cardiometabolic risk and physical fitness in adolescents.pdf
- Tamaño:
- 2.16 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- TEXTO COMPLETO EN INGLÉS
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: