Study of the affinity between the protein kinase PKA and peptide substrates derived from kemptide using molecular dynamics simulations and MM/GBSA

Cargando...
Miniatura
Fecha
2014
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Public Library of Science
Nombre de Curso
Licencia CC
Atribución 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
We have carried out a protocol in computational biochemistry including molecular dynamics (MD) simulations and MM/GBSA free energy calculations on the complex between the protein kinase A (PKA) and the specific peptide substrate Kemptide (LRRASLG). We made the same calculations on other PKA complexes that contain Kemptide derivatives (with mutations of the arginines, and with deletions of N and C-terminal amino acids). We predicted shifts in the free energy changes from the free PKA to PKA-substrate complex (δδGE→ES) when Kemptide structure is modified (we consider that the calculated shifts correlate with the experimental shifts of the free energy changes from the free PKA to the transition states (δδGE→TS) determined by the catalytic efficiency (kcat/KM) changes). Our results demonstrate that it is possible to predict the kinetic properties of protein kinases using simple computational biochemistry methods. As an additional benefit, these methods give detailed molecular information that permit the analysis of the atomic forces that contribute to the affinity between protein kinases and their substrates. © 2014 Mena-Ulecia et al.
Notas
Indexación: Scopus
Palabras clave
Cyclic AMP Dependent Protein Kinase, Protein Kinase, DFG
Citación
DOI
10.1371/journal.pone.0109639
Link a Vimeo