The RR Lyrae projected density distribution from the Galactic centre to the halo
Cargando...
Archivos
Fecha
2021-02-01
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Nombre de Curso
Licencia CC
Licencia CC
Resumen
The projected density distribution of type ab RR Lyrae (RRab) stars was characterised from the innermost regions of the Milky Way to the halo, with the aim of placing constraints on the Galaxy's evolution. The compiled sample (NRRab = 64 850) stems from fundamental mode RR Lyrae variables identified by the VVV, OGLE, and Gaia surveys. The distribution is well fitted by three power laws over three radial intervals. In the innermost region (R < 2.2°) the distribution follows ςRRab[1] R-0.94 ± 0.051, while in the external region the distribution adheres to ςRRab[2] R-1.50 ± 0.019 for 2.2° < R < 8.0° and ςRRab[3] R-2.43 ± 0.043 for 8.0° < R < 30.0°. Conversely, the cumulative distribution of red clump (RC) giants exhibits a more concentrated distribution in the mean, but in the central R < 2.2° the RRab population is more peaked, whereas globular clusters (GCs) follow a density power law (ςGCs R-1.59 ± 0.060 for R < 30.0°) similar to that of RRab stars, especially when considering a more metal-poor subsample ([Fe/H] < -1.1 dex). The main conclusion emerging from the analysis is that the RRab distribution favours the star cluster infall and merger scenario for creating an important fraction (> 18%) of the central Galactic region. The radii containing half of the populations (half populations radii) are RH RRab = 6.8° (0.99 kpc), RH RC = 4.2° (0.61 kpc), and RH GCs = 11.9° (1.75 kpc) for the RRab stars, RC giants, and GCs, respectively. Finally, merely ∼1% of the stars have been actually discovered in the innermost region (R < 35 pc) out of the expected (based on our considerations) total number of RRab therein: N ∼ 1562. That deficit will be substantially ameliorated with future space missions like the Nancy Grace Roman Space Telescope (formerly WFIRST).
Notas
Indexación Scopus
Palabras clave
Galaxy: center, Galaxy: general, Galaxy: structure, Infrared: stars, Stars: variables: RR Lyrae, Surveys
Citación
Astronomy and Astrophysics Volume 6461 February 2021 Article number A45
DOI
10.1051/0004-6361/202038463