Identification of the Transcriptional Regulatory Role of RUNX2 by Network Analysis in Lung Cancer Cells

Cargando...
Miniatura
Fecha
2022-10
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Nombre de Curso
Licencia CC
Atribución 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
The use of a new bioinformatics pipeline allowed the identification of deregulated transcription factors (TFs) coexpressed in lung cancer that could become biomarkers of tumor establishment and progression. A gene regulatory network (GRN) of lung cancer was created with the normalized gene expression levels of differentially expressed genes (DEGs) from the microarray dataset GSE19804. Moreover, coregulatory and transcriptional regulatory network (TRN) analyses were performed for the main regulators identified in the GRN analysis. The gene targets and binding motifs of all potentially implicated regulators were identified in the TRN and with multiple alignments of the TFs’ target gene sequences. Six transcription factors (E2F3, FHL2, ETS1, KAT6B, TWIST1, and RUNX2) were identified in the GRN as essential regulators of gene expression in non-small-cell lung cancer (NSCLC) and related to the lung tumoral process. Our findings indicate that RUNX2 could be an important regulator of the lung cancer GRN through the formation of coregulatory complexes with other TFs related to the establishment and progression of lung cancer. Therefore, RUNX2 could become an essential biomarker for developing diagnostic tools and specific treatments against tumoral diseases in the lung after the experimental validation of its regulatory function.
Notas
Indexación: Scopus
Palabras clave
lung cancer (LC), differentially expressed genes (DEGs), transcription factors (TFs), coexpression networks, gene regulatory network (GRN), diagnostic and prognostic biomarkers
Citación
DOI
https://doi.org/10.3390/biomedicines10123122
Link a Vimeo