Interactions between Core Elements of the Botrytis cinerea Circadian Clock Are Modulated by Light and Different Protein Domains

No hay miniatura disponible
Fecha
2022-05
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Nombre de Curso
Licencia CC
ATRIBUCIÓN 4.0 INTERNACIONAL CC BY 4.0 Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Botrytis cinerea possesses a complex light-sensing system composed of eleven photoreceptors. In B. cinerea, bcwcl1 encodes for the BcWCL1 protein, the orthologue of the blue-light photoreceptor WC-1 from Neurospora crassa. The functional partner of BcWCL1 is the BcWCL2 protein, both interacting in the nucleus and forming the B. cinerea white collar complex (BcWCC). This complex is required for photomorphogenesis and circadian regulation. However, no molecular evidence shows a light-dependent interaction between the BcWCC components or light-sensing capabilities in BcWCL1. In this work, by employing a yeast two-hybrid system that allows for the in vivo analysis of protein–protein interactions, we confirm that BcWCL1 and BcWCL2 interact in the absence of light as well as upon blue-light stimulation, primarily through their PAS (Per-Arnt-Sim) domains. Deletion of the PAS domains present in BcWCL1 (BcWCL1PAS∆) or BcWCL2 (BcWCL2PAS∆) severely impairs the interaction between these proteins. Interestingly, the BcWCL1PAS∆ protein shows a blue-light response and interacts with BcWCL2 or BcWCL2PAS∆ upon light stimulation. Finally, we demonstrate that BcWCL1 and BcWCL1PAS∆ respond to blue light by introducing a point mutation in the photoactive cysteine, confirming that both proteins are capable of light sensing. Altogether, the results revealed the complexity of protein–protein interactions occurring between the core elements of the B. cinerea circadian clock. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Notas
Indexación: Scopus.
Palabras clave
Botrytis cinerea, Optogenetics, PAS and LOV domains, Photoreceptors, Yeast
Citación
Journal of Fungi, Volume 8, Issue 5, May 2022, Article number 486
DOI
10.3390/jof8050486
Link a Vimeo