Hardware-in-the-loop to test an mppt technique of solar photovoltaic system: A support vector machine approach

Cargando...
Miniatura
Fecha
2021-03
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI AG
Nombre de Curso
Licencia CC
Licencia CC
Resumen
This paper proposes a new method for maximum power point tracking (MPPT) of the photovoltaic (PV) system while using a DC-DC boost converter. The conventional perturb and observe (P&O) method has a fast tracking response, but it presents oscillation around the maximum power point (MPP) in steady state. Therefore, to satisfy transient and steady-state responses, this paper presents a MPPT method using support vector machines (SVMs). The use of SVM will help to improve the tracking speed of maximum power point of the PV system without oscillations near MPP. A boost converter is used to implement the MPPT method, where the input voltage of the DC-DC converter is regulated using a double loop where the inner loop is a current control that is based on passivity. The MPPT structure is validated by hardware in the loop, a real time and high-speed simulator (PLECS RT Box 1), and a digital signal controller (DSC) are used to model the PV system and implement the control strategies, respectively. The proposed strategy presents low complexity and it is implemented in a commercial low-cost DSC (TI 28069M). The performance of the MPPT proposed is presented under challenging experimental profiles with solar irradiance and temperature variations across the panel. In addition, the performance of the proposed method is compared with the P&O method, which is traditionally most often used in MPPT under demanding tests, in order to demonstrate the superiority of the strategy presented. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Notas
Indexación Scopus
Palabras clave
Maximum Power Point Trackers, Powerpoint, Photovoltaic System, Current control based on passivity, Hardware in the loop testing, Photovoltaic system, Support vector machines
Citación
Sustainability (Switzerland), Volume 13, Issue 6, 2 March 2021, Article number 3000
DOI
10.3390/su13063000
Link a Vimeo