A high-velocity scatterer revealed in the thinning ejecta of a type II supernova

dc.contributor.authorLeonard, Douglas C.
dc.contributor.authorDessart, Luc
dc.contributor.authorHillier, D. John
dc.contributor.authorPignata, Giuliano
dc.contributor.authorWilliams, G. Grant
dc.contributor.authorHoffman, Jennifer L.
dc.contributor.authorMilne, Peter
dc.contributor.authorSmith, Nathan
dc.contributor.authorSmith, Paul S.
dc.contributor.authorKhandrika, Harish G.
dc.date.accessioned2025-03-14T15:23:43Z
dc.date.available2025-03-14T15:23:43Z
dc.date.issued2021-11-10
dc.description.abstractWe present deep, nebular-phase spectropolarimetry of the Type II-P/L SN 2013ej, obtained 167 days after explosion with the European Southern Observatory’s Very Large Telescope. The polarized flux spectrum appears as a nearly perfect (92% correlation), redshifted (by ∼4000 km s−1) replica of the total flux spectrum. Such a striking correspondence has never been observed before in nebular-phase supernova spectropolarimetry, although data capable of revealing it have heretofore been only rarely obtained. Through comparison with 2D polarized radiative transfer simulations of stellar explosions, we demonstrate that localized ionization produced by the decay of a high-velocity, spatially confined clump of radioactive 56Ni—synthesized by and launched as part of the explosion with final radial velocity exceeding 4500 km s−1—can reproduce the observations through enhanced electron scattering. Additional data taken earlier in the nebular phase (day 134) yield a similarly strong correlation (84%) and redshift, whereas photospheric-phase epochs that sample days 8 through 97 do not. This suggests that the primary polarization signatures of the high-velocity scattering source only come to dominate once the thick, initially opaque hydrogen envelope has turned sufficiently transparent. This detection in an otherwise fairly typical core-collapse supernova adds to the growing body of evidence supporting strong asymmetries across nature’s most common types of stellar explosions, and establishes the power of polarized flux—and the specific information encoded by it in line photons at nebular epochs—as a vital tool in such investigations going forward. © 2021. The Author(s). Published by the American Astronomical Society.
dc.description.sponsorshipIndexación: Scopus.
dc.description.urihttps://iopscience-iop-org.recursosbiblioteca.unab.cl/article/10.3847/2041-8213/ac31bf#back-to-top-target
dc.identifier.citationAstrophysical Journal Letters, Volume 921, Issue 2, 10 November 2021, Article number L35
dc.identifier.doi10.3847/2041-8213/ac31bf
dc.identifier.issn2041-8205
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/63776
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.rights.licenseAttribution 4.0 International CC BY 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCore-collapse supernovae (304)
dc.subjectLate stellar evolution (911)
dc.subjectRadiative transfer simulations (1967)
dc.subjectSpectropolarimetry (1973)
dc.subjectSupernovae (1668)
dc.subjectType II supernovae (1731)
dc.titleA high-velocity scatterer revealed in the thinning ejecta of a type II supernova
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Leonard_A_high-velocity_scatterer_revealed.pdf
Tamaño:
1.81 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: