Galaxies in the zone of avoidance: Misclassifications using machine learning tools
dc.contributor.author | Marchant Cortés, P. | |
dc.contributor.author | Nilo Castellón, J.L. | |
dc.contributor.author | Alonso, M.V. | |
dc.contributor.author | Baravalle, L. | |
dc.contributor.author | Villalon, C. | |
dc.contributor.author | Sgró, M.A. | |
dc.contributor.author | Daza-Perilla, I.V. | |
dc.contributor.author | Soto, M. | |
dc.contributor.author | Milla Castro, F. | |
dc.contributor.author | Minniti, D. | |
dc.contributor.author | Masetti, N. | |
dc.contributor.author | Valotto, C. | |
dc.contributor.author | Lares, M. | |
dc.date.accessioned | 2024-06-01T15:30:14Z | |
dc.date.available | 2024-06-01T15:30:14Z | |
dc.date.issued | 2024-06 | |
dc.description | Indexación: Scopus. | |
dc.description.abstract | Context. Automated methods for classifying extragalactic objects in large surveys offer significant advantages compared to manual approaches in terms of efficiency and consistency. However, the existence of the Galactic disk raises additional concerns. These regions are known for high levels of interstellar extinction, star crowding, and limited data sets and studies. Aims. In this study, we explore the identification and classification of galaxies in the zone of avoidance (ZoA). In particular, we compare our results in the near-infrared (NIR) with X-ray data. Methods. We analyzed the appearance of objects in the Galactic disk classified as galaxies using a published machine-learning (ML) algorithm and make a comparison with the visually confirmed galaxies from the VVV NIRGC catalog. Results. Our analysis, which includes the visual inspection of all sources cataloged as galaxies throughout the Galactic disk using ML techniques reveals significant differences. Only four galaxies were found in both the NIR and X-ray data sets. Several specific regions of interest within the ZoA exhibit a high probability of being galaxies in X-ray data but closely resemble extended Galactic objects. Our results indicate the difficulty in using ML methods for galaxy classification in the ZoA, which is mainly due to the scarcity of information on galaxies behind the Galactic plane in the training set. They also highlight the importance of considering specific factors that are present to improve the reliability and accuracy of future studies in this challenging region. | |
dc.description.accesoabierto | SI | |
dc.description.agrad | We would like to thank the anonymous referee for useful comments and suggestions which have helped to improve this paper. P.M.C. thanks the support of the Universidad de La Serena and the Southern Office of Aerospace Research and Development of the Air Force Office of the Scientific Research International Office of the United States (SOARD/AFOSR). J.L.N.C. is grateful for the financial support received from SOARD/AFOSR through grants FA9550-18-1-0018 and FA9550-22-1-0037. M.V.A., L.B., and C.V. thank the support of the Consejo de Investigaciones Científicas y Técnicas (CONICET) and Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SeCyT). F.M.C. thanks the support of ANID BECAS/DOCTORADO NACIONAL 21110001. D.M. gratefully acknowledges support by the ANID BASAL projects ACE210002 and FB210003 and by Fondecyt Project No. 1220724. The authors gratefully acknowledge data from the ESO Public Survey program IDs 179.B2002 and 198.B-2004 taken with the VISTA telescope, and products from the Cambridge Astronomical Survey Unit (CASU) | |
dc.description.uri | https://www.aanda.org/articles/aa/full_html/2024/06/aa48637-23/aa48637-23.html | |
dc.identifier.citation | Astronomy and Astrophysics. Open Access. Volume 686. 1 June 2024. Article number A18 | |
dc.identifier.doi | 10.1051/0004-6361/202348637 | |
dc.identifier.folio | ANID BECAS/DOCTORADO NACIONAL 21110001 | |
dc.identifier.folio | ANID BASAL projects ACE210002 | |
dc.identifier.folio | ANID BASAL projects FB210003 | |
dc.identifier.folio | Fondecyt Project No. 1220724 | |
dc.identifier.genero | M | |
dc.identifier.issn | 0004-6361 | |
dc.identifier.uri | https://repositorio.unab.cl/handle/ria/57231 | |
dc.language.iso | en | |
dc.other.orcid | https://orcid.org/0000-0002-7064-099X | |
dc.publisher | EDP Sciences | |
dc.rights.license | CC BY 4.0 Attribution 4.0 International Deed | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | catalogs | |
dc.subject | infrared: galaxies | |
dc.subject | surveys | |
dc.subject | X-rays: galaxies | |
dc.title | Galaxies in the zone of avoidance: Misclassifications using machine learning tools | |
dc.type | Artículo |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Marchant-P-Galaxies-in-the-zone-of-avoidance-Misclassifications-using-machine-learning-tools.pdf
- Tamaño:
- 2.32 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- TEXTO COMPLETO EN INGLÉS
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: