Automated classification of eclipsing binary systems in the VVV Survey

dc.contributor.authorDaza-Perilla I.V.
dc.contributor.authorGramajo L.V.
dc.contributor.authorLares M.
dc.contributor.authorPalma T.
dc.contributor.authorLopes, C.E. Ferreira
dc.contributor.authorMinniti D.
dc.contributor.authorClariá J.J.
dc.date.accessioned2024-09-26T21:13:04Z
dc.date.available2024-09-26T21:13:04Z
dc.date.issued2023-03
dc.descriptionIndexación: Scopus
dc.description.abstractWith the advent of large-scale photometric surveys of the sky, modern science witnesses the dawn of big data astronomy, where automatic handling and discovery are paramount. In this context, classification tasks are among the key capabilities a data reduction pipeline must possess in order to compile reliable data sets, to accomplish data processing with an efficiency level impossible to achieve by means of detailed processing and human intervention. The VISTA Variables of the Vía Láctea Survey, in the southern part of the Galactic disc, comprises multiepoch photometric data necessary for the potential discovery of variable objects, including eclipsing binary systems (EBs). In this study, we use a recently published catalogue of one hundred EBs, classified by fine-tuning theoretical models according to contact, detached, or semidetached classes belonging to the tile d040 of the VVV. We describe the method implemented to obtain a supervised machine-learning model, capable of classifying EBs using information extracted from the light curves of variable object candidates in the phase space from tile d078. We also discuss the efficiency of the models, the relative importance of the features and the future prospects to construct an extensive data base of EBs in the VVV survey. © 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
dc.identifier.citationMonthly Notices of the Royal Astronomical Society. Volume 520, Issue 1, Pages 828 - 8381. March 2023
dc.identifier.issn0035-8711
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/60591
dc.language.isoen
dc.publisherOxford University Press
dc.subjectBinaries: Eclipsing
dc.subjectInfrared: Stars
dc.subjectMethods: Data Analysis
dc.subjectMethods: Statistical
dc.titleAutomated classification of eclipsing binary systems in the VVV Survey
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Daza-Perilla_Automated_classification_of_eclipsing_binary_systems_2023.pdf
Tamaño:
1.41 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLES
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: