On Renyi entropy for free conformal fields: Holographic and q-analog recipes
No hay miniatura disponible
Archivos
Fecha
2015-03
Autores
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Institute of Physics Publishing
Nombre de Curso
Licencia CC
Attribution 3.0 Unported (CC BY 3.0)
Licencia CC
https://creativecommons.org/licenses/by/3.0/
Resumen
We describe a holographic approach to explicitly computing the universal logarithmic contributions to entanglement and Renyi entropies for free conformal scalar and spinor fields on even-dimensional spheres. This holographic derivation proceeds in two steps: first, following Casini and Huerta, a conformal mapping to thermal entropy in a hyperbolic geometry; then identification of the hyperbolic geometry with the conformal boundary of a bulk hyperbolic space and use of an AdS/CFT holographic formula to compute the resultant functional determinant. We explicitly verify the connection with the type-A trace anomaly for the entanglement entropy, whereas the Renyi entropy is computed with the aid of the Sommerfeld formula in order to deal with a conical defect. We show that as a by-product, the log coefficient of the Renyi entropy for round spheres can be efficiently obtained as the q-analog of a procedure similar to the one found by Cappelli and D'Appollonio that rendered the type-A trace anomaly. © 2015 IOP Publishing Ltd.
Notas
Indexación: Scopus
Palabras clave
entanglement, holography, Renyi entropy
Citación
Journal of Physics A: Mathematical and Theoretical Volume 48, Issue 1013 March 2015 Article number 105401
DOI
10.1088/1751-8113/48/10/105401