From an antiferromagnetic insulator to a strongly correlated metal in square-lattice MCl2(pyrazine)2 coordination solids
No hay miniatura disponible
Archivos
Fecha
2022-12
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Nature Research
Nombre de Curso
Licencia CC
Atribución 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Electronic synergy between metal ions and organic linkers is a key to engineering molecule-based materials with a high electrical conductivity and, ultimately, metallicity. To enhance conductivity in metal-organic solids, chemists aim to bring the electrochemical potentials of the constituent metal ions and bridging organic ligands closer in a quest to obtain metal-d and ligand-π admixed frontier bands. Herein, we demonstrate the critical role of the metal ion in tuning the electronic ground state of such materials. While VCl2(pyrazine)2 is an electrical insulator, TiCl2(pyrazine)2 displays the highest room-temperature electronic conductivity (5.3 S cm–1) for any metal-organic solid involving octahedrally coordinated metal ions. Notably, TiCl2(pyrazine)2 exhibits Pauli paramagnetism consistent with the specific heat, supporting the existence of a Fermi liquid state (i.e., a correlated metal). This result widens perspectives for designing molecule-based systems with strong metal-ligand covalency and electronic correlations. © 2022, The Author(s).
Notas
Indexación: Scopus.
Palabras clave
Coordination compound, Metal ion, Metal organic framework, Pyrazine derivative, Electrical conductivity, Electrochemical method, Insulation, Lattice dynamics, Ligand, Liquid, Metal
Citación
Nature Communications, Volume 13, Issue 1, December 2022 Article number 5766
DOI
10.1038/s41467-022-33342-5