Morphological classification of galaxies through structural and star formation parameters using machine learning

No hay miniatura disponible
Fecha
2025-02
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Oxford University Press
Nombre de Curso
Licencia CC
Attribution 4.0 International CC BY 4.0 Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
We employ the eXtreme Gradient Boosting (XGBoost) machine learning (ML) method for the morphological classification of galaxies into two (early-type, late-type) and five (E, S0–S0a, Sa–Sb, Sbc–Scd, Sd–Irr) classes, using a combination of non-parametric (C, A, S, AS, Gini, M20, c5090), parametric (Sérsic index, n), geometric (axial ratio, BA), global colour (g − i, u − r, u − i), colour gradient [∆(g − i)], and asymmetry gradient (∆A9050) information, all estimated for a local galaxy sample (z < 0.15) compiled from the Sloan Digital Sky Survey imaging data. We train the XGBoost model and evaluate its performance through multiple standard metrics. Our findings reveal better performance when utilizing all 14 parameters, achieving accuracies of 88 per cent and 65 per cent for the two-class and five-class classification tasks, respectively. In addition, we investigate a hierarchical classification approach for the five-class scenario, combining three XGBoost classifiers. We observe comparable performance to the ‘direct’ five-class classification, with discrepancies of only up to 3 per cent. Using Shapley Additive Explanations (an advanced interpretation tool), we analyse how galaxy parameters impact the model’s classifications, providing valuable insights into the influence of these features on classification outcomes. Finally, we compare our results with previous studies and find them consistently aligned.
Notas
Indexación: Scopus
Palabras clave
galaxies: general, galaxies: structure, methods: data analysis, methods: miscellaneous
Citación
Monthly Notices of the Royal Astronomical Society Volume 537, Issue 2, Pages 876 - 8961 February 2025
DOI
10.1093/mnras/staf085
Link a Vimeo