Algebraic cycles on Severi-Brauer Schemes of prime degree over a curve
dc.contributor.author | Gonzalez-Aviles, Cristián | |
dc.date.accessioned | 2013-12-30T19:41:34Z | |
dc.date.accessioned | 2016-05-24T20:20:17Z | |
dc.date.available | 2013-12-30T19:41:34Z | |
dc.date.available | 2016-05-24T20:20:17Z | |
dc.date.issued | 2007 | |
dc.description.abstract | Abstract. Let k be a perfect field and let p be a prime number different from the characteristic of k. Let C be a smooth, projective and geometrically integral k-curve and let X be a Severi-Brauer C-scheme of relative dimension p − 1 . In this paper we show that CHd (X)tors contains a subgroup isomorphic to CH0(X/C) for every d in the range 2 ≤ d ≤ p. We deduce that, if k is a number field, then CHd (X) is finitely generated for every d in the indicated range. | en |
dc.identifier.citation | Pre-print | es |
dc.identifier.uri | http://repositorio.unab.cl/xmlui/handle/ria/2297 | |
dc.language.iso | en | es |
dc.subject | Algebraic | en |
dc.subject | Degree | en |
dc.subject | Curve | en |
dc.subject | Theorem | en |
dc.title | Algebraic cycles on Severi-Brauer Schemes of prime degree over a curve | en |
dc.type | Artículo | es |
Archivos
Bloque original
1 - 1 de 1