A Bayesian interpretation of first-order phase transitions
No hay miniatura disponible
Archivos
Fecha
2016-03
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer Science and Business Media, LLC
Nombre de Curso
Licencia CC
Licencia CC
Resumen
In this work we review the formalism used in describing the thermody namics of first-order phase transitions from the point of view of maximum entropy
inference. We present the concepts of transition temperature, latent heat and entropy
difference between phases as emergent from the more fundamental concept of internal
energy, after a statistical inference analysis. We explicitly demonstrate this point of
view by making inferences on a simple game, resulting in the same formalism as in
thermodynamical phase transitions. We show that analogous quantities will inevitably
arise in any problem of inferring the result of a yes/no question, given two different
states of knowledge and information in the form of expectation values. This exposi tion may help to clarify the role of these thermodynamical quantities in the context of
different first-order phase transitions such as the case of magnetic Hamiltonians (e.g.
the Potts model).
Notas
Indexación: Scopus.
Palabras clave
Maximum Entropy, Bayesian Inference, Phase Transitions
Citación
Foundations of Physics. Volume 46, Issue 3, Pages 350 - 359. 1 March 2016
DOI
10.1007/s10701-015-9967-5