Duality invariance implies Poincaré invariance
No Thumbnail Available
Date
2013-01
Authors
Profesor/a Guía
Facultad/escuela
Idioma
en
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Nombre de Curso
item.page.dc.rights
Attribution 3.0 Unported (CC BY 3.0)
item.page.dc.rights
Abstract
We consider all possible dynamical theories which evolve two transverse vector fields out of a three-dimensional Euclidean hyperplane, subject to only two assumptions: (i) the evolution is local in space, and (ii) the theory is invariant under "duality rotations" of the vector fields into one another. The commutators of the Hamiltonian and momentum densities are shown to be necessarily those of the Poincaré group or its zero signature contraction. Space-time structure thus emerges out of the principle of duality.
item.page.dc.description
Indexación: Scopus.
Keywords
Chern-Simons Theories, Gauge Transformation, Spin, Dynamical theory, Euclidean, Momentum density, Poincare, Principle of duality
Citation
Physical Review Letters, Volume 110, Issue 12, January 2013, Article number 011603
DOI
10.1103/PhysRevLett.110.011603