A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO 420-G13 probes an elusive radio jet

dc.contributor.authorFernández-Ontiveros, J.
dc.contributor.authorDasyra, K.
dc.contributor.authorHatziminaoglou, E.
dc.contributor.authorMalkan, M.
dc.contributor.authorPereira-Santaella, M.
dc.contributor.authorPapachristou, M.
dc.contributor.authorSpinoglio, L.
dc.contributor.authorCombes, F.
dc.contributor.authorAalto, S.
dc.contributor.authorNagar, N.
dc.contributor.authorImanishi, M.
dc.contributor.authorAndreani, P.
dc.contributor.authorRicci, C.
dc.contributor.authorSlater, R.
dc.date.accessioned2021-09-01T22:24:06Z
dc.date.available2021-09-01T22:24:06Z
dc.date.issued2020
dc.descriptionIndexación: Scopus.es
dc.description.abstractA prominent jet-driven outflow of CO(2-1) molecular gas is found along the kinematic minor axis of the Seyfert 2 galaxy ESO 420-G13, at a distance of 340-600  pc from the nucleus. The wind morphology resembles the characteristic funnel shape, formed by a highly collimated filamentary emission at the base, and likely traces the jet propagation through a tenuous medium, until a bifurcation point at 440  pc. Here the jet hits a dense molecular core and shatters, dispersing the molecular gas into several clumps and filaments within the expansion cone. We also trace the jet in ionised gas within the inner ≲ 340  pc using the [Ne » II]12.8  μm line emission, where the molecular gas follows a circular rotation pattern. The wind outflow carries a mass of ∼8  ×  106  M⊙ at an average wind projected speed of ∼160  km  s-1, which implies a mass outflow rate of ∼14  M⊙   yr-1. Based on the structure of the outflow and the budget of energy and momentum, we discard radiation pressure from the active nucleus, star formation, and supernovae as possible launching mechanisms. ESO 420-G13 is the second case after NGC 1377 where a previously unknown jet is revealed through its interaction with the interstellar medium, suggesting that unknown jets in feeble radio nuclei might be more common than expected. Two possible jet-cloud configurations are discussed to explain an outflow at this distance from the AGN. The outflowing gas will likely not escape, thus a delay in the star formation rather than quenching is expected from this interaction, while the feedback effect would be confined within the central few hundred parsecs of the galaxyes
dc.description.urihttps://www.aanda.org/articles/aa/full_html/2020/01/aa36552-19/aa36552-19.html
dc.identifier.citationAstronomy and Astrophysics, Volume 6331, January 2020, Article number A127es
dc.identifier.doiDOI: 10.1051/0004-6361/201936552
dc.identifier.issn0004-6361
dc.identifier.urihttp://repositorio.unab.cl/xmlui/handle/ria/20080
dc.language.isoenes
dc.publisherEDP Scienceses
dc.subjectGalaxies: activees
dc.subjectGalaxies: evolutiones
dc.subjectGalaxies: individual: ESO 420-G13es
dc.subjectISM: jets and outflowses
dc.subjectSubmillimeter: ISMes
dc.subjectTechniques: high angular resolutiones
dc.titleA CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO 420-G13 probes an elusive radio jetes
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Fernandez-Ontiveros_ A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO 420-G13 probes an elusive radio jet.pdf
Tamaño:
2.58 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLES
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: