VLTI-MATISSE L - And N -band aperture-synthesis imaging of the unclassified B[e] star FS Canis Majoris
No hay miniatura disponible
Archivos
Fecha
2022-02-01
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Nombre de Curso
Licencia CC
Attribution 4.0 International
CC BY 4.0
Deed
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
Context. FS Canis Majoris (FS CMa, HD 45677) is an unclassified B[e] star surrounded by an inclined dust disk. The evolutionary stage of FS CMa is still debated. Perpendicular to the circumstellar disk, a bipolar outflow was detected. Infrared aperture-synthesis imaging provides us with a unique opportunity to study the disk structure. Aims. Our aim is to study the intensity distribution of the disk of FS CMa in the mid-infrared L and N bands. Methods. We performed aperture-synthesis imaging of FS CMa with the MATISSE instrument (Multi AperTure mid-Infrared SpectroScopic Experiment) in the low spectral resolution mode to obtain images in the L and N bands. We computed radiative transfer models that reproduce the L- and N-band intensity distributions of the resolved disks. Results. We present L- and N-band aperture-synthesis images of FS CMa reconstructed in the wavelength bands of 3.4-3.8 and 8.6-9.0 μm. In the L-band image, the inner rim region of an inclined circumstellar disk and the central object can be seen with a spatial resolution of 2.7 milliarcsec (mas). An inner disk cavity with an angular diameter of ~6 × 12 mas is resolved. The L-band disk consists of a bright northwestern (NW) disk region and a much fainter southeastern (SE) region. The images suggest that we are looking at the bright inner wall of the NW disk rim, which is on the far side of the disk. In the N band, only the bright NW disk region is seen. In addition to deriving the inclination and the inner disk radius, fitting the reconstructed brightness distributions via radiative transfer modelling allows one to constrain the innermost disk structure, in particular the shape of theinner disk rim. © K.-H. Hofmann et al. 2022.
Notas
Indexación: Scopus.
Palabras clave
Circumstellar matter, Stars: emission-line, Be, Stars: imaging, Stars: individual: FS CMa, Techniques: image processing, Techniques: interferometric
Citación
Astronomy and Astrophysics, Volume 658, 1 February 2022, Article number A81
DOI
10.1051/0004-6361/202141601