Comparative analysis of Felixounavirus genomes including two new members of the genus that infect Salmonella infantis

Cargando...
Miniatura
Fecha
2021-07
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Nombre de Curso
Licencia CC
Atribución 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Salmonella spp. is one of the most common foodborne pathogens worldwide; therefore, its control is highly relevant for the food industry. Phages of the Felixounavirus genus have the characteristic that one phage can infect a large number of different Salmonella serovars and, thus, are proposed as an alternative to antimicrobials in food production. Here, we describe two new members of the Felixounavirus genus named vB_Si_35FD and vB_Si_DR94, which can infect Salmonella Infantis. These new members were isolated and sequenced, and a subsequent comparative genomic analysis was conducted including 23 publicly available genomes of Felixounaviruses that infect Salmonella. The genomes of vB_Si_35FD and vB_Si_DR94 are 85,818 and 85,730 bp large and contain 129 and 125 coding sequences, respectively. The genomes did not show genes associated with virulence or antimicrobial resistance, which could be useful for candidates to use as biocontrol agents. Comparative genomics revealed that closely related Felixounavirus are found in distinct geographical locations and that this genus has a conserved genomic structure despite its worldwide distribution. Our study revealed a highly conserved structure of the phage genomes, and the two newly described phages could represent promising biocontrol candidates against Salmonella spp. from a genomic viewpoint. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Notas
Indexación; Scopus
Palabras clave
Bacteriophages, Comparative genomics, Felixounavirus, Genomes, Salmonella phages, Salmonella spp
Citación
Antibiotics Volume 10, Issue 7July 2021 Article number 806
DOI
10.3390/antibiotics10070806
Link a Vimeo