A Janovec-Kay-Dunn-Like Behavior at Thickness Scaling in Ultra-Thin Antiferroelectric ZrO2 Films

dc.contributor.authorTasneem, Nujhat
dc.contributor.authorYousry, Yasmin Mohamed
dc.contributor.authorTian, Mengkun
dc.contributor.authorDopita, Milan
dc.contributor.authorReyes-Lillo, Sebastian E.
dc.contributor.authorKacher, Josh
dc.contributor.authorBassiri-Gharb, Nazanin
dc.contributor.authorKhan, Asif Islam
dc.date.accessioned2025-03-31T23:29:24Z
dc.date.available2025-03-31T23:29:24Z
dc.date.issued2021-11
dc.descriptionIndexación: Scopus.
dc.description.abstractOriginally based on phenomenological observations, the Janovec–Kay–Dunn (JKD) scaling law has been historically used to describe the dependence of the ferroelectric coercive fields (Ec) on a critical length scale of the material, wherein the film thickness (t) is considered the length scale, and Ec ∝ t−2/3. Here, for the first time, a JKD-type scaling behavior is reported in an antiferroelectric material, using the ultra-thin films of prototypical flourite-structure binary oxide, zirconia. In these films, a decrease in the ZrO2 layer thickness from 20 nm to 5.4 nm leads to an increase in critical fields for both nonpolar-to-polar (Ea), and polar-to-nonpolar (Ef) transitions, accompanied by a decrease in the average crystallite size, and an increase in the tetragonal distortion of the non-polar P42/nmc ground state structure. Notably, the -2/3 power law as in the JKD law holds when average crystallite size (d), measured from glancing-incident X-ray diffraction, is considered as the critical length scale—i.e., Ea, Ef ∝ d−2/3. First principles calculations suggest that the increase of tetragonality in thinner films contributes to an increase of the energy barrier for the transition from the non-polar tetragonal ground state to the field-induced polar orthorhombic phase, and in turn, an increase in Ea critical fields. These results suggest a de-stabilization of the ferroelectric phase with a decreasing thickness in antiferroelectric ZrO2, which is contrary to the observations in its fluorite-structure ferroelectric counterparts. With the recent interests in utilizing antiferroelectricity for advanced semiconductor applications, our fundamental exposition of the thickness dependence of functional responses therein can accelerate the development of miniaturized, antiferroelectric electronic memory elements for the complementary metal-oxide-semiconductor based high-volume manufacturing platforms. © 2021 Wiley-VCH GmbH
dc.description.urihttps://advanced-onlinelibrary-wiley-com.recursosbiblioteca.unab.cl/doi/10.1002/aelm.202100485
dc.identifier.citationAdvanced Electronic Materials, Volume 7, Issue 11, November 2021, Article number 2100485
dc.identifier.doi10.1002/aelm.202100485
dc.identifier.issn2199-160X
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/63939
dc.language.isoen
dc.publisherJohn Wiley and Sons Inc
dc.rights.licenseAttribution 4.0 International CC BY 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAntiferroelectricity
dc.subjectJanovec–Kay–Dunn law
dc.subjectSize-effects
dc.subjectUltra-thin films
dc.subjectZirconia
dc.titleA Janovec-Kay-Dunn-Like Behavior at Thickness Scaling in Ultra-Thin Antiferroelectric ZrO2 Films
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Tasneem_A_Janovec‐Kay‐Dunn‐Like.pdf
Tamaño:
741 KB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: