Extended Rindler spacetime and a new multiverse structure

Cargando...
Miniatura
Fecha
2018-04
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Physical Society
Nombre de Curso
Licencia CC
CC BY 3.0 CC BY 4.0
Licencia CC
Resumen
This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of the "multiverse" idea presented in this paper, that is shared by the fields in the standard model coupled to gravity, are different from other notions of a multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper we illustrate these properties for the extended Rindler space, while black hole spacetime and the cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union of the four wedges in (u,v) light-cone coordinates as in Fig. 1. In quantum mechanics, the wavefunction is an analytic function of (u,v) that is sensitive to branch points at the horizons u=0 or v=0, with branch cuts attached to them. The wave function is uniquely defined by analyticity on an infinite number of sheets in the cut analytic (u,v) spacetime. This structure is naturally interpreted as an infinite stack of identical Minkowski geometries, or "universes", connected to each other by analyticity across branch cuts, such that each sheet represents a different Minkowski universe when (u,v) are analytically continued to the real axis on any sheet. We show in this paper that, in the absence of interactions, information does not flow from one Rindler sheet to another. By contrast, for an eternal black hole spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions, analyticity shows how information is "lost" due to a flow to other universes, enabled by an additional branch point and cut due to the black hole singularity. © 2018 American Physical Society.
Notas
Indexación Scopus
Palabras clave
Higgs, Inflation, Standard Model
Citación
Physical Review D Volume 97, Issue 811 April 2018 Article number 085009
DOI
10.1103/PhysRevD.97.085009
Link a Vimeo