Spin Frustrated Pyrazolato Triangular CuII Complex: Structure and Magnetic Properties, an Overview
No hay miniatura disponible
Archivos
Fecha
2023-06
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Nombre de Curso
Licencia CC
CC BY 4.0 DEED
Attribution 4.0 International
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
The synthesis and structural characterization of a new triangular Cu3–μ3OH pyrazolato complex of formula, [Cu3(μ3−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3), Hpz = pyrazole, is presented. The triangular unit forms a quasi-isosceles triangle with Cu–Cu distances of 3.3739(9), 3.3571(9), and 3.370(1) Å. This complex is isostructural to the hexanuclear complex [Cu3(μ3−OH)(pz)3(Hpz)3](ClO4)2]2 (QOPJIP). A comparative structural analysis with other reported triangular Cu3–μ3OH pyrazolato complexes has been carried out, showing that, depending on the pyrazolato derivative, an auxiliary ligand or counter-anion can affect the nuclearity and/or the dimensionality of the system. The magnetic properties of 1−Cu3 are analyzed using experimental data and DFT calculation. A detailed analysis was performed on the magnetic properties, comparing experimental and theoretical data of other molecular triangular Cu3–μ3OH complexes, showing that the displacement of the μ3−OH− from the Cu3 plane, together with the type of organic ligands, influences the nature of the magnetic exchange interaction between the spin-carrier centers, since it affects the overlap of the magnetic orbitals involved in the exchange pathways. Finally, a detailed comparison of the magnetic properties of 1−Cu3 and QOPJIP was carried out, which allowed us to understand the differences in their magnetic properties. © 2023 by the authors.
Notas
INDEXACIÓN: SCOPUS.
Palabras clave
antisymmetric exchange, Cu3–μ3OH complex, DFT calculations, magnetic susceptibility, pyrazolato ligands, spin frustration, trinuclear complex
Citación
Magnetochemistry, Volume 9, Issue 6,June 2023, Article number 155
DOI
10.3390/magnetochemistry9060155