Redes neuronales ConvLSTM para la predicción de eventos sísmicos en Chile
dc.contributor.advisor | Nicolis, Orietta | |
dc.contributor.advisor | Peralta Márquez, Billy | |
dc.contributor.author | González Fuentes, Alex | |
dc.contributor.editor | Facultad de Ingeniería | |
dc.date.accessioned | 2023-01-16T21:33:46Z | |
dc.date.available | 2023-01-16T21:33:46Z | |
dc.date.issued | 2021 | |
dc.description | Tesis (Magíster en Ciencias de la Computación) | es |
dc.description.abstract | Predecir el riesgo sísmico es importante para poder tomar decisiones con anticipación y evitar efectos catastróficos. En este trabajo se propone un modelo de red neuronal basado en la red Convolucional (CNN) y en la red Long Short Term Memory (LSTM) para predecir el riesgo sísmico en Chile. En particular, se utilizara una red Multi-column ConvLSTM para la predicción del número medio de eventos sísmico mayores a una magnitud de 2, 8 en la escala de Richter, en las regiones de Chile de Coquimbo y la Araucanía entre los años 2010 y 2017. Para este modelo se ocuparon los valores de la función de intensidad estimada a través del modelo ETAS y el desplazamiento acumulado previo a un los eventos sísmicos. Dada las características espaciales y temporales de los datos sísmicos se consideraron matrices de dimensión 20x20 de los últimos 20 días para predecir el número medio de eventos sísmicos del día siguiente en área determinada. De los resultados obtenidos, la red Multi-column ConvLSTM logró tener un coeficiente de determinación de 0, 72 y un MSE más bajo de otras redes. | es |
dc.identifier.uri | https://repositorio.unab.cl/xmlui/handle/ria/36157 | |
dc.language.iso | es | es |
dc.publisher | Universidad Andrés Bello | es |
dc.subject | Redes Neurales (Ciencia de la Computación) | es |
dc.subject | Terremotos | es |
dc.subject | Procesamiento de Datos | es |
dc.title | Redes neuronales ConvLSTM para la predicción de eventos sísmicos en Chile | es |
dc.type | Tesis | es |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- a140049_González_A_Redes_neuronales_ConvLSTM_para_la_2021_Tesis.pdf
- Tamaño:
- 1.64 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- TEXTO COMPLETO EN ESPAÑOL
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: