How many components? Quantifying the complexity of the metallicity distribution in the Milky Way bulge with APOGEE

dc.contributor.authorRojas-Arriagada, Alvaro
dc.contributor.authorZasowski, Gail
dc.contributor.authorSchultheis, Mathias
dc.contributor.authorZoccali, Manuela
dc.contributor.authorHasselquist, Sten
dc.contributor.authorChiappini, Cristina
dc.contributor.authorCohen, Roger E.
dc.contributor.authorCunha, Katia
dc.contributor.authorFernández-Trincado, José G.
dc.contributor.authorFragkoudi, Francesca
dc.contributor.authorGarcia-Hernández, D. A.
dc.contributor.authorGeisler, Doug
dc.contributor.authorGran, Felipe
dc.contributor.authorLian, Jianhui
dc.contributor.authorMajewski, Steven
dc.contributor.authorMinniti, Dante
dc.contributor.authorMonachesi, Antonela
dc.contributor.authorNitschelm, Christian
dc.contributor.authorQueiroz, Anna B. A.
dc.date.accessioned2023-12-05T13:55:02Z
dc.date.available2023-12-05T13:55:02Z
dc.date.issued2020-11-01
dc.descriptionIndexación (Scopus)es
dc.description.abstractWe use data of ~13 000 stars from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment survey to study the shape of the bulge metallicity distribution function (MDF) within the region |l| = 11° and |b| = 13°, and spatially constrained to RGC = 3.5 kpc. We apply Gaussian mixture modelling and non-negative matrix factorization decomposition techniques to identify the optimal number and the properties of MDF components. We find that the shape and spatial variations of the MDF (at [Fe/H]=-1 dex) are well represented as a smoothly varying contribution of three overlapping components located at [Fe/H] = +0.32, -0.17, and -0.66 dex. The bimodal MDF found in previous studies is in agreement with our trimodal assessment once the limitations in sample size and individual measurement errors are taken into account. The shape of the MDF and its correlations with kinematics reveal different spatial distributions and kinematical structure for the three components co-existing in the bulge region. We confirm the consensus physical interpretation of metal-rich stars as associated with the secularly evolved disc into a boxy/peanut X-shape bar. On the other hand, metal-intermediate stars could be the product of in-situ formation at high redshift in a gas-rich environment characterized by violent and fast star formation. This interpretation would help us to link a present-day structure with those observed in formation in the centre of high-redshift galaxies. Finally, metal-poor stars may correspond to the metal-rich tail of the population sampled at lower metallicity from the study of RR Lyrae stars. Conversely, they could be associated with the metal-poor tail of the early thick disc.es
dc.identifier.citationMonthly Notices of the Royal Astronomical Society Volume 499, Issue 1, Pages 1037 - 1057 1 November 2020es
dc.identifier.doi10.1093/mnras/staa2807en
dc.identifier.issn0035-8711
dc.identifier.urihttps://repositorio.unab.cl/xmlui/handle/ria/54397
dc.language.isoenes
dc.publisherOxford University Presses
dc.rights.licenseCC BY 4.0 Deed Atribución 4.0 Internacionalen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.esen
dc.subjectGalaxy: bulgees
dc.subjectGalaxy: stellar contentes
dc.subjectGalaxy: structurees
dc.subjectInfrared: starses
dc.subjectStars: abundanceses
dc.subjectStars: fundamental parameterses
dc.titleHow many components? Quantifying the complexity of the metallicity distribution in the Milky Way bulge with APOGEEes
dc.typeArtículoes
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
staa2807.pdf
Tamaño:
4.18 MB
Formato:
Adobe Portable Document Format
Descripción:
TEXTO COMPLETO EN INGLÉS
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: