An assessment of esophageal balloon use for the titration of airway pressure release ventilation and controlled mechanical ventilation in a patient with extrapulmonary acute respiratory distress syndrome: a case report
Cargando...
Archivos
Fecha
2021-12
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
BioMed Central Ltd
Nombre de Curso
Licencia CC
Licencia CC
Resumen
Background: Esophageal pressure measurement is a minimally invasive monitoring process that assesses respiratory mechanics in patients with acute respiratory distress syndrome. Airway pressure release ventilation is a relatively new positive pressure ventilation modality, characterized by a series of advantages in patients with acute respiratory distress syndrome. Case presentation: We report a case of a 55-year-old chilean female, with preexisting hypertension and recurrent renal colic who entered the cardiosurgical intensive care unit with signs and symptoms of urinary sepsis secondary to a right-sided obstructive urolithiasis. At the time of admission, the patient showed signs of urinary sepsis, a poor overall condition, hemodynamic instability, tachycardia, hypotension, and needed vasoactive drugs. Initially the patient was treated with volume control ventilation. Then, ventilation was with conventional ventilation parameters described by the Acute Respiratory Distress Syndrome Network. However, hemodynamic complications led to reduced airway pressure. Later she presented intraabdominal hypertension that compromised the oxygen supply and her ventilation management. Considering these records, an esophageal manometry was used to measure distending lung pressure, that is, transpulmonary pressure, to protect lungs. Initial use of the esophageal balloon was in a volume-controlled modality (deep sedation), which allowed the medical team to perform inspiratory and expiratory pause maneuvers to monitor transpulmonary plateau pressure as a substitute for pulmonary distension and expiratory pause and determine transpulmonary positive end-expiratory pressure. On the third day of mechanical respiration, the modality was switched to airway pressure release ventilation. The use of airway pressure release ventilation was associated with reduced hemodynamic complications and kept transpulmonary pressure between 0 and 20 cmH2O despite a sustained high positive end-expiratory pressure of 20 cmH2O. Conclusion: The application of this technique is shown in airway pressure release ventilation with spontaneous ventilation, which is then compared with a controlled modality that requires a lesser number of sedative doses and vasoactive drugs, without altering the criteria for lung protection as guided by esophageal manometry. © 2021, The Author(s).
Notas
Palabras clave
ARDS; Esophageal balloon; Mechanical ventilation; Transpulmonary pressure
Citación
Journal of Medical Case ReportsOpen AccessVolume 15, Issue 1December 2021 Article number 435