Examinando por Autor "Vásquez, C."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Catalases are NAD(P)H-dependent tellurite reductases(Public Library of Science, 2006-12) Calderón, I.; Arenas, F.; Pérez, J.; Fuentes, D.; Araya, M.; Saavedra, C.; Tantaleán, J.; Pichuantes, S.; Youderian, P.; Vásquez, C.Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO32-) to the less toxic, insoluble metal, tellurium (Te°), in vitro. An Escherichia colimutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.Ítem DNA, cell wall and general oxidative damage underlie the tellurite/cefotaxime synergistic effect in Escherichia coli(Public Library of Science, 2013-11) Molina-Quiroz, R.; Loyola, D.; Muñoz-Villagrán, C.; Quatrini, R.; Vásquez, C.; Pérez-Donoso, J.The constant emergence of antibiotic multi-resistant pathogens is a concern worldwide. An alternative for bacterial treatment using nM concentrations of tellurite was recently proposed to boost antibiotic-toxicity and a synergistic effect of tellurite/cefotaxime (CTX) was described. In this work, the molecular mechanism underlying this phenomenon is proposed. Global changes of the transcriptional profile of Escherichia coli exposed to tellurite/CTX were determined by DNA microarrays. Induction of a number of stress regulators (as SoxS), genes related to oxidative damage and membrane transporters was observed. Accordingly, increased tellurite adsorption/uptake and oxidative injuries to proteins and DNA were determined in cells exposed to the mixture of toxicants, suggesting that the tellurite-mediated CTX-potentiating effect is dependent, at least in part, on oxidative stress. Thus, the synergistic tellurite-mediated CTX-potentiating effect depends on increased tellurite uptake/adsorption which results in damage to proteins, DNA and probably other macromolecules. Our findings represent a contribution to the current knowledge of bacterial physiology under antibiotic stress and can be of great interest in the development of new antibiotic-potentiating strategies.Ítem Monounsaturated fatty acids are substrates for aldehyde generation in tellurite-exposed Escherichia coli(Hindawi, 2013) Pradenas, G.; Díaz-Vásquez, W.; Pérez-Donoso, J.; Vásquez, C.Reactive oxygen species (ROS) damage macromolecules and cellular components in nearly all kinds of cells and often generate toxic intracellular byproducts. In this work, aldehyde generation derived from the Escherichia coli membrane oxidation as well as membrane fatty acid profiles, protein oxidation, and bacterial resistance to oxidative stress elicitors was evaluated. Studies included wild-type cells as well as cells exhibiting a modulated monounsaturated fatty acid (MUFA) ratio. The hydroxyaldehyde 4-hydroxy 2-nonenal was found to be most likely produced by E. coli, whose levels are dependent upon exposure to oxidative stress elicitors. Aldehyde amounts and markers of oxidative damage decreased upon exposure to E. coli containing low MUFA ratios, which was paralleled by a concomitant increase in resistance to ROS-generating compounds. MUFAs ratio, lipid peroxidation, and aldehyde generation were found to be directly related; that is, the lower the MUFAs ratio, the lower the peroxide and aldehyde generation levels. These results provide additional evidence about MUFAs being targets for membrane lipid oxidation and their relevance in aldehyde generation.Ítem Tellurite enters Escherichia coli mainly through the PitA phosphate transporter(Wiley, 2012-09) Elías, A.; Abarca, M.; Montes, R.; Chasteen, T.; Pérez-Donoso, J.; Vásquez, C.everal transporters suspected to be involved in tellurite uptake in Escherichia coli were analyzed. Results showed that the PitA phosphate transporter was related to tellurite uptake. Escherichia coli ΔpitA was approximately four-fold more tolerant to tellurite, and cell viability remained almost unchanged during prolonged exposure to the toxicant as compared with wild type or ΔpitB cells. Notably, reduced thiols (toxicant targets) as well as superoxide dismutase, catalase, and fumarase C activities did not change when exposing the ΔpitA strain to tellurite, suggesting that tellurite-triggered oxidative damage is attenuated in the absence of PitA. After toxicant exposure, remaining extracellular tellurite was higher in E. coli ΔpitA than in control cells. Whereas inductively coupled plasma atomic emission spectrometric studies confirmed that E. coli ΔpitA accumulates ~50% less tellurite than the other strains under study, tellurite strongly inhibited 32Pi uptake suggesting that the PitA transporter is one of the main responsible for tellurite uptake in this bacterium.