Modifying the test of understanding graphs in kinematics

No hay miniatura disponible
Fecha
2017-09
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
American Physical Society
Nombre de Curso
Licencia CC
Licencia CC
Resumen
In this article, we present several modifications to the Test of Understanding Graphs in Kinematics. The most significant changes are (i) the addition and removal of items to achieve parallelism in the objectives (dimensions) of the test, thus allowing comparisons of students' performance that were not possible with the original version, and (ii) changes to the distractors of some of the original items that represent the most frequent alternative conceptions. The final modified version (after an iterative process involving four administrations of test variations over two years) was administered to 471 students of an introductory university physics course at a large private university in Mexico. When analyzing the final modified version of the test it was found that the added items satisfied the statistical tests of difficulty, discriminatory power, and reliability; also, that the great majority of the modified distractors were effective in terms of their frequency selection and discriminatory power; and, that the final modified version of the test satisfied the reliability and discriminatory power criteria as well as the original test. Here, we also show the use of the new version of the test, presenting a new analysis of students' understanding not possible to do before with the original version of the test, specifically regarding the objectives and items that in the new version meet parallelisms. Finally, in the PhysPort project (physport.org), we present the final modified version of the test. It can be used by teachers and researchers to assess students' understanding of graphs in kinematics, as well as their learning about them. © 2017 authors. Published by the American Physical Society.
Notas
Indexación: Scopus
Palabras clave
Citación
Physical Review Physics Education Research Volume 13, Issue 231 August 2017 Article number 020111
DOI
Link a Vimeo